DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping

Abstract

We present that satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ~ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot plasma corrections to the wave dispersion, we provide the first experimental demonstration that suprathermal electrons indeed control the upper limit of the refractive index of highly oblique whistler mode waves. In conclusion, such results further support the importance of incorporating very oblique waves into radiation belt models.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]
  1. Univ. of California, Los Angeles, CA (United States); Boston Univ., MA (United States)
  2. Univ. of California, Los Angeles, CA (United States)
  3. CEA, DAM, DIF, Arpajon (France)
  4. Univ. of Iowa, Iowa City, IA (United States)
  5. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  6. Univ. of New Hampshire, Durham, NH (United States)
  7. Univ. of Minnesota, Minneapolis, MN (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE; National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1416311
Report Number(s):
LA-UR-17-29192
Journal ID: ISSN 0094-8276; TRN: US1800914
Grant/Contract Number:  
AC52-06NA25396
Resource Type:
Accepted Manuscript
Journal Name:
Geophysical Research Letters
Additional Journal Information:
Journal Volume: 44; Journal Issue: 24; Journal ID: ISSN 0094-8276
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
58 GEOSCIENCES; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Heliospheric and Magnetospheric Physics

Citation Formats

Ma, Q., Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., Spence, H. E., and Wygant, J. Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping. United States: N. p., 2017. Web. doi:10.1002/2017GL075892.
Ma, Q., Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., Spence, H. E., & Wygant, J. Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping. United States. https://doi.org/10.1002/2017GL075892
Ma, Q., Artemyev, A. V., Mourenas, D., Li, W., Thorne, R. M., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., Spence, H. E., and Wygant, J. Thu . "Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping". United States. https://doi.org/10.1002/2017GL075892. https://www.osti.gov/servlets/purl/1416311.
@article{osti_1416311,
title = {Very Oblique Whistler Mode Propagation in the Radiation Belts: Effects of Hot Plasma and Landau Damping},
author = {Ma, Q. and Artemyev, A. V. and Mourenas, D. and Li, W. and Thorne, R. M. and Kletzing, C. A. and Kurth, W. S. and Hospodarsky, G. B. and Reeves, G. D. and Spence, H. E. and Wygant, J.},
abstractNote = {We present that satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ~ 100–200. Further comparing measured refractive indexes with theoretical estimates incorporating hot plasma corrections to the wave dispersion, we provide the first experimental demonstration that suprathermal electrons indeed control the upper limit of the refractive index of highly oblique whistler mode waves. In conclusion, such results further support the importance of incorporating very oblique waves into radiation belt models.},
doi = {10.1002/2017GL075892},
journal = {Geophysical Research Letters},
number = 24,
volume = 44,
place = {United States},
year = {Thu Nov 30 00:00:00 EST 2017},
month = {Thu Nov 30 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Scaling laws for the inner structure of the radiation belts: RADIATION BELT STRUCTURE
journal, April 2017

  • Mourenas, D.; Ma, Q.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 44, Issue 7
  • DOI: 10.1002/2017GL072987

Unraveling the excitation mechanisms of highly oblique lower band chorus waves: EXCITATION OF OBLIQUE LOWER BAND CHORUS
journal, September 2016

  • Li, W.; Mourenas, D.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 43, Issue 17
  • DOI: 10.1002/2016GL070386

The importance of amplitude modulation in nonlinear interactions between electrons and large amplitude whistler waves
journal, July 2013


New chorus wave properties near the equator from Van Allen Probes wave observations
journal, May 2016

  • Li, W.; Santolik, O.; Bortnik, J.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL068780

Global model of lower band and upper band chorus from multiple satellite observations: GLOBAL MODEL OF WHISTLER MODE CHORUS
journal, October 2012

  • Meredith, Nigel P.; Horne, Richard B.; Sicard-Piet, Angélica
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A10
  • DOI: 10.1029/2012JA017978

Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations: VERB-4D
journal, November 2015

  • Shprits, Yuri Y.; Kellerman, Adam C.; Drozdov, Alexander Y.
  • Geophysical Research Letters, Vol. 42, Issue 22
  • DOI: 10.1002/2015GL065230

Singular value decomposition methods for wave propagation analysis: SVD METHODS FOR WAVE PROPAGATION ANALYSIS
journal, February 2003


The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013


Diffusion by one wave and by many waves: DIFFUSION BY ONE WAVE AND BY MANY WAVES
journal, March 2010

  • Albert, J. M.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A3
  • DOI: 10.1029/2009JA014732

Oblique Whistler-Mode Waves in the Inhomogeneous Magnetospheric Plasma: Resonant Interactions with Energetic Charged Particles
journal, March 2009


The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013


Wave energy budget analysis in the Earth’s radiation belts uncovers a missing energy
journal, May 2015

  • Artemyev, A. V.; Agapitov, O. V.; Mourenas, D.
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8143

Estimation of electron temperature by VLF waves propagating in directions near the resonance cone
journal, September 1977


Distribution of density along magnetospheric field lines
journal, January 2006

  • Denton, R. E.; Takahashi, K.; Galkin, I. A.
  • Journal of Geophysical Research, Vol. 111, Issue A4
  • DOI: 10.1029/2005JA011414

Helium, Oxygen, Proton, and Electron (HOPE) Mass Spectrometer for the Radiation Belt Storm Probes Mission
journal, March 2013


Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
journal, December 2013


Diffuse auroral scattering by whistler mode chorus waves: Dependence on wave normal angle distribution: AURORAL SCATTERING BY WHISTLER MODE CHORUS WAVES
journal, October 2011

  • Ni, Binbin; Thorne, Richard M.; Meredith, Nigel P.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A10
  • DOI: 10.1029/2011JA016517

Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
journal, April 2016

  • Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier
  • Space Science Reviews, Vol. 200, Issue 1-4
  • DOI: 10.1007/s11214-016-0252-5

Chorus functional dependencies derived from CRRES data: CHORUS FUNCTIONAL DEPENDENCIES
journal, July 2013

  • Spasojevic, M.; Shprits, Y. Y.
  • Geophysical Research Letters, Vol. 40, Issue 15
  • DOI: 10.1002/grl.50755

Evidence of stronger pitch angle scattering loss caused by oblique whistler-mode waves as compared with quasi-parallel waves
journal, September 2014

  • Li, W.; Mourenas, D.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 41, Issue 17
  • DOI: 10.1002/2014GL061260

Low-Frequency Whistler Mode
journal, January 1966


Exclusion principle for very oblique and parallel lower band chorus waves: CHORUS WAVE EXCLUSION
journal, November 2016

  • Agapitov, O. V.; Mourenas, D.; Artemyev, A. V.
  • Geophysical Research Letters, Vol. 43, Issue 21
  • DOI: 10.1002/2016GL071250

Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations: CHORUS WAVE DISTRIBUTION ON THEMIS
journal, December 2011

  • Li, W.; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A12
  • DOI: 10.1029/2011JA017035

Stability of relativistic electron trapping by strong whistler or electromagnetic ion cyclotron waves
journal, August 2015

  • Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4927774

Quasielectrostatic and electrostatic approximations for whistler mode waves in the magnetospheric plasma
journal, February 1990


Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements: WHISTLER WAVES STATISTICS
journal, June 2013

  • Agapitov, Oleksiy; Artemyev, Anton; Krasnoselskikh, Vladimir
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 6
  • DOI: 10.1002/jgra.50312

Empirical model of lower band chorus wave distribution in the outer radiation belt: EMPIRICAL MODEL OF CHORUS WAVES
journal, December 2015

  • Agapitov, O. V.; Artemyev, A. V.; Mourenas, D.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 12
  • DOI: 10.1002/2015JA021829

Quasi-linear diffusion coefficients for highly oblique whistler mode waves: DIFFUSION COEFFICIENTS FOR OBLIQUE WAVES
journal, May 2017

  • Albert, J. M.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 5
  • DOI: 10.1002/2017JA024124

The spectral extent of chorus in the off-equatorial magnetosphere: CHORUS SPECTRAL EXTENT
journal, April 2013

  • Bunch, N. L.; Spasojevic, M.; Shprits, Y. Y.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1029/2012JA018182

Three-dimensional electron radiation belt simulations using the BAS Radiation Belt Model with new diffusion models for chorus, plasmaspheric hiss, and lightning-generated whistlers: GLAUERT ET AL.
journal, January 2014

  • Glauert, Sarah A.; Horne, Richard B.; Meredith, Nigel P.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 1
  • DOI: 10.1002/2013JA019281

The effect of electron and ion temperature on the refractive index surface of 1-10 kHz whistler mode waves in the inner magnetosphere
journal, January 2015

  • Kulkarni, P.; Gołkowski, M.; Inan, U. S.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 1
  • DOI: 10.1002/2014JA020669

Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes: Van Allen Probes Electron Densities
journal, February 2015

  • Kurth, W. S.; De Pascuale, S.; Faden, J. B.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 2
  • DOI: 10.1002/2014JA020857

Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS: WHISTLER WAVE PROPAGATION PROPERTIES
journal, April 2013

  • Li, Wen; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1002/jgra.50176

Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt: Simulation of Energy-Dependent Processes
journal, May 2016

  • Ma, Q.; Li, W.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 5
  • DOI: 10.1002/2016JA022507

Magnetospheric whistler mode ray tracing in a warm background plasma with finite electron and ion temperature
journal, July 2017

  • Maxworth, A. S.; Gołkowski, M.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 7
  • DOI: 10.1002/2016JA023546

Consequences of geomagnetic activity on energization and loss of radiation belt electrons by oblique chorus waves
journal, April 2014

  • Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.
  • Journal of Geophysical Research: Space Physics, Vol. 119, Issue 4
  • DOI: 10.1002/2013JA019674

Very oblique whistler generation by low-energy electron streams: OBLIQUE WHISTLER-MODE WAVE GENERATION
journal, May 2015

  • Mourenas, D.; Artemyev, A. V.; Agapitov, O. V.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 5
  • DOI: 10.1002/2015JA021135

Self-consistent formation of a 0.5 cyclotron frequency gap in magnetospheric whistler mode waves: WHISTLER MODE FREQUENCY GAP FORMATION
journal, August 2017

  • Ratcliffe, H.; Watt, C. E. J.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 8
  • DOI: 10.1002/2017JA024399

Works referencing / citing this record:

A comparative study of ELF and VLF noise characteristics of nor’wester at a low latitude tropical station
journal, January 2019

  • Sarkar, Hirak; Banerjee, Abhijit; Mitra, Shankar Prasad
  • SN Applied Sciences, Vol. 1, Issue 2
  • DOI: 10.1007/s42452-018-0158-9

Highly Oblique Lower-Band Chorus Statistics: Dependencies of Wave Power on Refractive Index and Geomagnetic Activity: OBLIQUE CHORUS POWER CHARACTERISTICS
journal, June 2018

  • Shi, R.; Mourenas, D.; Artemyev, A.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 6
  • DOI: 10.1029/2018ja025337

Properties of Intense Field-Aligned Lower-Band Chorus Waves: Implications for Nonlinear Wave-Particle Interactions: INTENSE FIELD-ALIGNED CHORUS WAVE-PACKETS
journal, July 2018

  • Zhang, X. -J.; Thorne, R.; Artemyev, A.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 7
  • DOI: 10.1029/2018ja025390

Effects of Ducting on Whistler Mode Chorus or Exohiss in the Outer Radiation Belt
journal, June 2019

  • Hanzelka, Miroslav; Santolík, Ondřej
  • Geophysical Research Letters, Vol. 46, Issue 11
  • DOI: 10.1029/2019gl083115

Parallel Acceleration of Suprathermal Electrons Caused by Whistler‐Mode Hiss Waves
journal, November 2019

  • Li, Jinxing; Ma, Qianli; Bortnik, Jacob
  • Geophysical Research Letters, Vol. 46, Issue 22
  • DOI: 10.1029/2019gl085562