skip to main content


98 results for: All records
Author ORCID ID is 0000000279858098
Full Text and Citations
  1. The substorm process releases large amounts of energy into the magnetospheric system, although where the energy is transferred to and how it is partitioned remains an open question. In this study, we address whether the substorm process contributes a significant amount of energy to the ring current. The ring current is a highly variable region, and understanding the energization processes provides valuable insight into how substorm-ring current coupling may contribute to the generation of storm conditions and provide a source of energy for wave driving. In order to quantify the energy input into the ring current during the substorm process,more » we analyze Radiation Belt Storm Probes Ion Composition Experiment and Helium Oxygen Proton Electron ion flux measurements for H +, O +, and He +. The energy content of the ring current is estimated and binned spatially for L and magnetic local time. The results are combined with an independently derived substorm event list to perform a statistical analysis of variations in the ring current energy content with substorm phase. We show that the ring current energy is significantly higher in the expansion phase compared to the growth phase, with the energy enhancement persisting into the substorm recovery phase. The characteristics of the energy enhancement suggest the injection of energized ions from the tail plasma sheet following substorm onset. The local time variations indicate a loss of energetic H + ions in the afternoon sector, likely due to wave-particle interactions. Overall, we find that the average energy input into the ring current is ~9% of the previously reported energy released during substorms.« less
  2. On 13 April 2013, the ACE spacecraft detected arrival of an interplanetary shock at 2250 UT, which is followed by the passage of the sheath region of an interplanetary coronal mass ejection (ICME) for a prolonged (18-hr) period. The polarity of interplanetary magnetic field Bz was northward inside the magnetic cloud region of the ICME. The ring current (SYM-H) index did not go below -7 nT during this event suggesting the absence of a typical geomagnetic storm. In this paper, the responses of the global ionospheric electric field associated with the passage of the ICME sheath region have been investigatedmore » using incoherent scatter radar measurements of Jicamarca and Arecibo (postmidnight sector) along with the variations of equatorial electrojet strength over India (day sector). It is found that westward and eastward prompt penetration (PP) electric fields affected ionosphere over Jicamarca/Arecibo and Indian sectors, respectively, during 0545–0800 UT. The polarities of the PP electric field perturbations over the day/night sectors are consistent with model predictions. In fact, DP2-type electric field perturbations with ~40-min periodicity are found to affect the ionosphere over both the sectors for about 2.25 hr during the passage of the ICME sheath region. Finally, this result shows that SYM-H index may not capture the full geoeffectivenss of the ICME sheath-driven storms and suggests that the PP electric field perturbations should be evaluated for geoeffectiveness of ICME when the polarity of interplanetary magnetic field Bz is northward inside the magnetic cloud region of the ICME.« less
  3. Using the total radiation belt electron content calculated from Van Allen Probe phase space density, the time-dependent and global response of the outer radiation belt during storms is statistically studied. Using phase space density reduces the impacts of adiabatic changes in the main phase, allowing a separation of adiabatic and nonadiabatic effects and revealing a clear modality and repeatable sequence of events in storm time radiation belt electron dynamics. This sequence exhibits an important first adiabatic invariant (μ)-dependent behavior in the seed (150 MeV/G), relativistic (1,000 MeV/G), and ultrarelativistic (4,000 MeV/G) populations. The outer radiation belt statistically shows an initialmore » phase dominated by loss followed by a second phase of rapid acceleration, while the seed population shows little loss and immediate enhancement. Lastly, the time sequence of the transition to the acceleration is also strongly μ dependent and occurs at low μ first, appearing to be repeatable from storm to storm.« less
  4. In this paper, we analyze large-amplitude upper-band chorus emissions measured near the magnetic equator by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument package on board the Van Allen Probes. In setting up the parameters of source electrons exciting the emissions based on theoretical analyses and observational results measured by the Helium Oxygen Proton Electron instrument, we calculate threshold and optimum amplitudes with the nonlinear wave growth theory. We find that the optimum amplitude is larger than the threshold amplitude obtained in the frequency range of the chorus emissions and that the wave amplitudes grow between themore » threshold and optimum amplitudes. Finally, in the frame of the wave growth process, the nonlinear growth rates are much greater than the linear growth rates.« less
  5. We simulate the radiation belt electron flux enhancements during selected Geospace Environment Modeling (GEM) challenge events to quantitatively compare the major processes involved in relativistic electron acceleration under different conditions. Van Allen Probes observed significant electron flux enhancement during both the storm time of 17–18 March 2013 and non–storm time of 19–20 September 2013, but the distributions of plasma waves and energetic electrons for the two events were dramatically different. During 17–18 March 2013, the SYM-H minimum reached -130 nT, intense chorus waves (peak B w ~140 pT) occurred at 3.5 < L < 5.5, and several hundred keV tomore » several MeV electron fluxes increased by ~2 orders of magnitude mostly at 3.5 < L < 5.5. During 19–20 September 2013, the SYM-H remained higher than -30 nT, modestly intense chorus waves (peak B w ~80 pT) occurred at L > 5.5, and electron fluxes at energies up to 3 MeV increased by a factor of ~5 at L > 5.5. The two electron flux enhancement events were simulated using the available wave distribution and diffusion coefficients from the GEM focus group Quantitative Assessment of Radiation Belt Modeling. By comparing the individual roles of local electron heating and radial transport, our simulation indicates that resonant interaction with chorus waves is the dominant process that accounts for the electron flux enhancement during the storm time event particularly near the flux peak locations, while radial diffusion by ultralow-frequency waves plays a dominant role in the enhancement during the non–storm time event. Incorporation of both processes reasonably reproduces the observed location and magnitude of electron flux enhancement.« less
  6. Observations during the main phase of geomagnetic storms reveal an anticorrelation between the occurrence of broadband low-frequency electromagnetic waves and outer radiation belt electron flux. Here, we show that the drift-bounce motion of electrons in the magnetic field of these waves leads to rapid electron transport. For observed spectral energy densities it is demonstrated that the wave magnetic field can drive radial diffusion via drift-bounce resonance on time scales less than a drift orbit. This process may provide outward transport sufficient to account for electron “dropouts” during storm main phase and more generally modulate the outer radiation belt during geomagneticmore » storms.« less
  7. Whistler mode chorus waves are particularly important in outer radiation belt dynamics due to their key role in controlling the acceleration and scattering of electrons over a very wide energy range. The efficiency of wave-particle resonant interactions is defined by whistler wave properties which have been described by the approximation of plane linear waves propagating through the cold plasma of the inner magnetosphere. However, recent observations of extremely high-amplitude whistlers suggest the importance of nonlinear wave-particle interactions for the dynamics of the outer radiation belt. Oblique chorus waves observed in the inner magnetosphere often exhibit drastically nonsinusoidal (with significant powermore » in the higher harmonics) waveforms of the parallel electric field, presumably due to the feedback from hot resonant electrons. We have considered the nature and properties of such nonlinear whistler waves observed by the Van Allen Probes and Time History of Events and Macroscale Interactions define during Substorms in the inner magnetosphere, and we show that the significant enhancement of the wave electrostatic component can result from whistler wave coupling with the beam-driven electrostatic mode through the resonant interaction with hot electron beams. Being modulated by a whistler wave, the electron beam generates a driven electrostatic mode significantly enhancing the parallel electric field of the initial whistler wave. Finally, we confirm this mechanism using a self-consistent particle-in-cell simulation. The nonlinear electrostatic component manifests properties of the beam-driven electron acoustic mode and can be responsible for effective electron acceleration in the inhomogeneous magnetic field.« less
    Cited by 1
  8. In this study, we perform a statistical study calculating electromagnetic ion cyclotron (EMIC) wave amplitudes based off in situ plasma measurements taken by the Van Allen Probes’ (1.1–5.8 R e) Helium, Oxygen, Proton, Electron (HOPE) instrument. Calculated wave amplitudes are compared to EMIC waves observed by the Electric and Magnetic Field Instrument Suite and Integrated Science on board the Van Allen Probes during the same period. The survey covers a 22-month period (1 November 2012 to 31 August 2014), a full Van Allen Probe magnetic local time (MLT) precession. The linear theory proxy was used to identify EMIC wave eventsmore » with plasma conditions favorable for EMIC wave excitation. Two hundred and thirty-two EMIC wave events (103 H +-band and 129 He +-band) were selected for this comparison. Nearly all events selected are observed beyond L = 4. Results show that calculated wave amplitudes exclusively using the in situ HOPE measurements produce amplitudes too low compared to the observed EMIC wave amplitudes. Hot proton anisotropy (Ahp) distributions are asymmetric in MLT within the inner (L < 7) magnetosphere with peak (minimum) A hp, ~0.81 to 1.00 (~0.62), observed in the dawn (dusk), 0000 < MLT ≤ 1200 (1200 < MLT ≤ 2400), sectors. Measurements of A hp are found to decrease in the presence of EMIC wave activity. A hp amplification factors are determined and vary with respect to EMIC wave-band and MLT. Lastly, He +-band events generally require double (quadruple) the measured A hp for the dawn (dusk) sector to reproduce the observed EMIC wave amplitudes.« less
  9. Using the Van Allen Probes/Helium, Oxygen, Proton, and Electron (HOPE) mass spectrometer, we perform a case study of the temporal evolution of ion spectral structures observed in the energy range of 1- ~50 keV throughout the geomagnetic storm of 2 October 2013. The ion spectral features are observed near the inner edge of the plasma sheet and are signatures of fresh transport from the plasma sheet into the inner magnetosphere. We find that the characteristics of the ion structures are determined by the intensity of the convection electric field. Prior to the beginning of the storm, the plasma sheet innermore » edge exhibits narrow nose spectral structures that vary little in energy across L values. Ion access to the inner magnetosphere during these times is limited to the nose energy bands. As convection is enhanced and large amounts of plasma are injected from the plasma sheet during the main phase of the storm, ion access occurs at a wide energy range, as no nose structures are observed. Here, as the magnetosphere recovers from the storm, single noses and then multiple noses are observed once again. Lastly, we use a model of ion drift and losses due to charge exchange to simulate the ion spectra and gain insight into the main observed features.« less
    Cited by 1
  10. We present that satellite observations of a significant population of very oblique chorus waves in the outer radiation belt have fueled considerable interest in the effects of these waves on energetic electron scattering and acceleration. However, corresponding diffusion rates are extremely sensitive to the refractive index N, controlled by hot plasma effects including Landau damping and wave dispersion modifications by suprathermal (15–100 eV) electrons. A combined investigation of wave and electron distribution characteristics obtained from the Van Allen Probes shows that peculiarities of the measured electron distribution significantly reduce Landau damping, allowing wave propagation with high N ~ 100–200. Furthermore » comparing measured refractive indexes with theoretical estimates incorporating hot plasma corrections to the wave dispersion, we provide the first experimental demonstration that suprathermal electrons indeed control the upper limit of the refractive index of highly oblique whistler mode waves. In conclusion, such results further support the importance of incorporating very oblique waves into radiation belt models.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.