DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Quaternary phase diagrams of spinel Li$$_y\square_{1–y}$$Mn$$_x$$Ni$$_{2–x}$$O$$_4$$ and composite cathode voltages for concentration gradient materials

Abstract

Core-shell coating structures and concentration gradient materials may enhance Li-ion battery performance by integrating advantages of core and shell components without introducing unfavorable problems associated with general coatings. The fundamental thermodynamic properties of concentration gradient composite materials are complex due to the multicomponent nature of the problem. Here, we systematically study the thermodynamics of ordering and phase separation in the quaternary spinel Li$$_y\square_{1–y}$$Mn$$_x$$Ni$$_{2–x}$$O$$_4$$ ($$\square$$ means vacancy) system by density functional theory calculations, together with the coupled cluster expansion method with interactions within and between (Li/$$\square$$) and (Mn/Ni) sublattices. On the basis of coupled cluster expansion interactions and Monte Carlo simulations, we calculate quaternary phase diagrams as a function of temperature as well as voltage profiles of single ordered phases and multiphase composite structures. The phase diagram and voltage results are in good agreement with available experimental observations. We also predict a stable high-voltage ordered compound LiMnNiO4, with a very high delithiation voltage of 4.76 V. For the composite (Mn-rich + Ni-rich) cathode materials, the voltage profiles show combinations of plateaus from each component compound. The computational strategy of combining quaternary phase diagrams with voltage calculations provides a pathway to understand and design concentration gradient materials.

Authors:
 [1];  [1];  [1]
  1. Northwestern Univ., Evanston, IL (United States). Dept. of Materials Science and Engineering
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Electrochemical Energy Science (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1388323
Alternate Identifier(s):
OSTI ID: 1264791
Grant/Contract Number:  
AC02-06CH11357; AC0206CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 94; Journal Issue: 1; Related Information: CEES partners with Argonne National Laboratory (lead); University of Illinois, Urbana-Champaign; Northwest University; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 36 MATERIALS SCIENCE; energy storage (including batteries and capacitors); charge transport; materials and chemistry by design; synthesis (novel materials)

Citation Formats

Hao, Shiqiang, Lu, Zhi, and Wolverton, Christopher. Quaternary phase diagrams of spinel Li$_y\square_{1–y}$Mn$_x$Ni$_{2–x}$O$_4$ and composite cathode voltages for concentration gradient materials. United States: N. p., 2016. Web. doi:10.1103/PhysRevB.94.014114.
Hao, Shiqiang, Lu, Zhi, & Wolverton, Christopher. Quaternary phase diagrams of spinel Li$_y\square_{1–y}$Mn$_x$Ni$_{2–x}$O$_4$ and composite cathode voltages for concentration gradient materials. United States. https://doi.org/10.1103/PhysRevB.94.014114
Hao, Shiqiang, Lu, Zhi, and Wolverton, Christopher. Tue . "Quaternary phase diagrams of spinel Li$_y\square_{1–y}$Mn$_x$Ni$_{2–x}$O$_4$ and composite cathode voltages for concentration gradient materials". United States. https://doi.org/10.1103/PhysRevB.94.014114. https://www.osti.gov/servlets/purl/1388323.
@article{osti_1388323,
title = {Quaternary phase diagrams of spinel Li$_y\square_{1–y}$Mn$_x$Ni$_{2–x}$O$_4$ and composite cathode voltages for concentration gradient materials},
author = {Hao, Shiqiang and Lu, Zhi and Wolverton, Christopher},
abstractNote = {Core-shell coating structures and concentration gradient materials may enhance Li-ion battery performance by integrating advantages of core and shell components without introducing unfavorable problems associated with general coatings. The fundamental thermodynamic properties of concentration gradient composite materials are complex due to the multicomponent nature of the problem. Here, we systematically study the thermodynamics of ordering and phase separation in the quaternary spinel Li$_y\square_{1–y}$Mn$_x$Ni$_{2–x}$O$_4$ ($\square$ means vacancy) system by density functional theory calculations, together with the coupled cluster expansion method with interactions within and between (Li/$\square$) and (Mn/Ni) sublattices. On the basis of coupled cluster expansion interactions and Monte Carlo simulations, we calculate quaternary phase diagrams as a function of temperature as well as voltage profiles of single ordered phases and multiphase composite structures. The phase diagram and voltage results are in good agreement with available experimental observations. We also predict a stable high-voltage ordered compound LiMnNiO4, with a very high delithiation voltage of 4.76 V. For the composite (Mn-rich + Ni-rich) cathode materials, the voltage profiles show combinations of plateaus from each component compound. The computational strategy of combining quaternary phase diagrams with voltage calculations provides a pathway to understand and design concentration gradient materials.},
doi = {10.1103/PhysRevB.94.014114},
journal = {Physical Review B},
number = 1,
volume = 94,
place = {United States},
year = {Tue Jul 19 00:00:00 EDT 2016},
month = {Tue Jul 19 00:00:00 EDT 2016}
}

Journal Article:

Citation Metrics:
Cited by: 7 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Nanostructured high-energy cathode materials for advanced lithium batteries
journal, October 2012

  • Sun, Yang-Kook; Chen, Zonghai; Noh, Hyung-Joo
  • Nature Materials, Vol. 11, Issue 11
  • DOI: 10.1038/nmat3435

Revealing the coupled cation interactions behind the electrochemical profile of LixNi0.5Mn1.5O4
journal, January 2012

  • Lee, Eunseok; Persson, Kristin A.
  • Energy & Environmental Science, Vol. 5, Issue 3
  • DOI: 10.1039/c2ee03068c

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Li ion battery materials with core–shell nanostructures
journal, January 2011

  • Su, Liwei; Jing, Yu; Zhou, Zhen
  • Nanoscale, Vol. 3, Issue 10, p. 3967-3983
  • DOI: 10.1039/c1nr10550g

Crystal Structure and Magnetic Properties of (Ni1-x]Mgx)6MnO8
journal, August 1995

  • Taguchi, Hideki; Omori, Sou; Nagao, Mahiko
  • Journal of Solid State Chemistry, Vol. 118, Issue 1
  • DOI: 10.1006/jssc.1995.1318

Projector augmented-wave method
journal, December 1994


Enhanced High-Rate Cycling Stability of LiMn[sub 2]O[sub 4] Cathode by ZrO[sub 2] Coating for Li-Ion Battery
journal, January 2005

  • Lin, Yong-Mao; Wu, Hung-Chun; Yen, Yu-Chan
  • Journal of The Electrochemical Society, Vol. 152, Issue 8
  • DOI: 10.1149/1.1945727

Research on Advanced Materials for Li-ion Batteries
journal, December 2009

  • Li, Hong; Wang, Zhaoxiang; Chen, Liquan
  • Advanced Materials, Vol. 21, Issue 45, p. 4593-4607
  • DOI: 10.1002/adma.200901710

Neutron structural characterization, inversion degree and transport properties of NiMn2O4 spinel prepared by the hydroxide route
journal, June 2012


The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries
journal, February 2012

  • Sun, Yang-Kook; Lee, Min-Joon; Yoon, Chong S.
  • Advanced Materials, Vol. 24, Issue 9
  • DOI: 10.1002/adma.201104106

Synthesis and Characterization of Li[(Ni 0.8 Co 0.1 Mn 0.1 ) 0.8 (Ni 0.5 Mn 0.5 ) 0.2 ]O 2 with the Microscale Core−Shell Structure as the Positive Electrode Material for Lithium Batteries
journal, September 2005

  • Sun, Yang-Kook; Myung, Seung-Taek; Kim, Myung-Hoon
  • Journal of the American Chemical Society, Vol. 127, Issue 38
  • DOI: 10.1021/ja053675g

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Phase transformations and volume changes in spinel LixMn2O4
journal, November 2000


First-principles prediction of redox potentials in transition-metal compounds with LDA + U
journal, December 2004


The Spinel Phase of LiMn[sub 2]O[sub 4] as a Cathode in Secondary Lithium Cells
journal, January 1991

  • Tarascon, J. M.
  • Journal of The Electrochemical Society, Vol. 138, Issue 10
  • DOI: 10.1149/1.2085330

Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Effect of AlF 3 Coating on Thermal Behavior of Chemically Delithiated Li 0.35 [Ni 1/3 Co 1/3 Mn 1/3 ]O 2
journal, March 2010

  • Myung, Seung-Taek; Lee, Ki-Soo; Yoon, Chong Seung
  • The Journal of Physical Chemistry C, Vol. 114, Issue 10
  • DOI: 10.1021/jp9082322

Generalized cluster description of multicomponent systems
journal, November 1984

  • Sanchez, J. M.; Ducastelle, F.; Gratias, D.
  • Physica A: Statistical Mechanics and its Applications, Vol. 128, Issue 1-2
  • DOI: 10.1016/0378-4371(84)90096-7

The alloy theoretic automated toolkit: A user guide
journal, December 2002


Enhancing the performances of Li-ion batteries by carbon-coating: present and future
journal, January 2012


Thermodynamic Aspects of Cathode Coatings for Lithium-Ion Batteries
journal, August 2014

  • Aykol, Muratahan; Kirklin, Scott; Wolverton, C.
  • Advanced Energy Materials, Vol. 4, Issue 17
  • DOI: 10.1002/aenm.201400690

Prediction of Quaternary Spinel Oxides as Li-Battery Cathodes: Cation Site Preference, Metal Mixing, Voltage and Phase Stability
journal, January 2014

  • Bhattacharya, Jishnu; Wolverton, C.
  • Journal of The Electrochemical Society, Vol. 161, Issue 9
  • DOI: 10.1149/2.0961409jes

Role of Oxygen Vacancies on the Performance of Li[Ni 0.5– x Mn 1.5+ x ]O 4 ( x = 0, 0.05, and 0.08) Spinel Cathodes for Lithium-Ion Batteries
journal, July 2012

  • Song, Jie; Shin, Dong Wook; Lu, Yuhao
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301825h

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Self-driven lattice-model Monte Carlo simulations of alloy thermodynamic properties and phase diagrams
journal, July 2002

  • Walle, A. van de; Asta, M.
  • Modelling and Simulation in Materials Science and Engineering, Vol. 10, Issue 5
  • DOI: 10.1088/0965-0393/10/5/304

Synthesis and Electrochemistry of LiNi[sub x]Mn[sub 2−x]O[sub 4]
journal, January 1997

  • Zhong, Qiming
  • Journal of The Electrochemical Society, Vol. 144, Issue 1
  • DOI: 10.1149/1.1837386

Nanostructured materials for advanced energy conversion and storage devices
journal, May 2005

  • Aricò, Antonino Salvatore; Bruce, Peter; Scrosati, Bruno
  • Nature Materials, Vol. 4, Issue 5, p. 366-377
  • DOI: 10.1038/nmat1368

Comparative Study of LiNi 0.5 Mn 1.5 O 4 - δ and LiNi 0.5 Mn 1.5 O 4 Cathodes Having Two Crystallographic Structures:  Fdm and P 4 3 32
journal, March 2004

  • Kim, J. -H.; Myung, S. -T.; Yoon, C. S.
  • Chemistry of Materials, Vol. 16, Issue 5
  • DOI: 10.1021/cm035050s

Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage Li x Ni 0.5 Mn 1.5 O 4 Spinel
journal, July 2013

  • Lee, Eunseok; Persson, Kristin A.
  • Chemistry of Materials, Vol. 25, Issue 14
  • DOI: 10.1021/cm4014738

Lithium Transport in Amorphous Al 2 O 3 and AlF 3 for Discovery of Battery Coatings
journal, April 2013

  • Hao, Shiqiang; Wolverton, C.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp311982d

Composition-Structure Relationships in the Li-Ion Battery Electrode Material LiNi 0.5 Mn 1.5 O 4
journal, August 2012

  • Cabana, Jordi; Casas-Cabanas, Montserrat; Omenya, Fredrick O.
  • Chemistry of Materials, Vol. 24, Issue 15
  • DOI: 10.1021/cm301148d

High-energy cathode material for long-life and safe lithium batteries
journal, March 2009

  • Sun, Yang-Kook; Myung, Seung-Taek; Park, Byung-Chun
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2418

Integrated Nano-Domains of Disordered and Ordered Spinel Phases in LiNi 0.5 Mn 1.5 O 4 for Li-Ion Batteries
journal, July 2014

  • Kim, Jung-Hyun; Huq, Ashfia; Chi, Miaofang
  • Chemistry of Materials, Vol. 26, Issue 15
  • DOI: 10.1021/cm501203r

An Investigation of Spinel-Related and Orthorhombic LiMnO[sub 2] Cathodes for Rechargeable Lithium Batteries
journal, January 1994

  • Gummow, R. J.
  • Journal of The Electrochemical Society, Vol. 141, Issue 5
  • DOI: 10.1149/1.2054893

Comparison of Overcharge Behavior of AlPO[sub 4]-Coated LiCoO[sub 2] and LiNi[sub 0.8]Co[sub 0.1]Mn[sub 0.1]O[sub 2] Cathode Materials in Li-Ion Cells
journal, January 2004

  • Cho, Jaephil; Kim, Hyemin; Park, Byungwoo
  • Journal of The Electrochemical Society, Vol. 151, Issue 10
  • DOI: 10.1149/1.1790511

Solid Solubility and Lattice Parameter of NiO-MnO
journal, October 1964


Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Model for Configurational Thermodynamics in Ionic Systems
journal, March 1995


A First-Principles Approach to Studying the Thermal Stability of Oxide Cathode Materials
journal, February 2007

  • Wang, L.; Maxisch, T.; Ceder, G.
  • Chemistry of Materials, Vol. 19, Issue 3
  • DOI: 10.1021/cm0620943

Mechanism of the Electrochemical Insertion of Lithium into LiMn[sub 2]O[sub 4] Spinels
journal, January 1998

  • Liu, W.
  • Journal of The Electrochemical Society, Vol. 145, Issue 2
  • DOI: 10.1149/1.1838285