DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe3O4

Abstract

As electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation highlights the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry.

Authors:
 [1];  [2];  [2];  [2];  [2];  [2];  [1];  [1];  [3]
  1. Stony Brook Univ., NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Stony Brook Univ., NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1370479
Grant/Contract Number:  
SC0012673; AC02-98CH10886
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 7; Journal Issue: 24; Related Information: m2M partners with Stony Brook University (lead); Brookhaven National Laboratory; Columbia University; Georgia Institute of Technology; Oak Ridge National Laboratory; Rensselaer Polytechnic Institute; University of California, Berkeley; University of North Carolina at Chapel Hill; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; energy storage (including batteries and capacitors); charge transport; mesostructured materials

Citation Formats

Bock, David C., Kirshenbaum, Kevin C., Wang, Jiajun, Zhang, Wei, Wang, Feng, Wang, Jun, Marschilok, Amy. C., Takeuchi, Kenneth J., and Takeuchi, Esther S. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe3O4. United States: N. p., 2015. Web. doi:10.1021/acsami.5b02478.
Bock, David C., Kirshenbaum, Kevin C., Wang, Jiajun, Zhang, Wei, Wang, Feng, Wang, Jun, Marschilok, Amy. C., Takeuchi, Kenneth J., & Takeuchi, Esther S. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe3O4. United States. https://doi.org/10.1021/acsami.5b02478
Bock, David C., Kirshenbaum, Kevin C., Wang, Jiajun, Zhang, Wei, Wang, Feng, Wang, Jun, Marschilok, Amy. C., Takeuchi, Kenneth J., and Takeuchi, Esther S. Fri . "2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe3O4". United States. https://doi.org/10.1021/acsami.5b02478. https://www.osti.gov/servlets/purl/1370479.
@article{osti_1370479,
title = {2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe3O4},
author = {Bock, David C. and Kirshenbaum, Kevin C. and Wang, Jiajun and Zhang, Wei and Wang, Feng and Wang, Jun and Marschilok, Amy. C. and Takeuchi, Kenneth J. and Takeuchi, Esther S.},
abstractNote = {As electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation highlights the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry.},
doi = {10.1021/acsami.5b02478},
journal = {ACS Applied Materials and Interfaces},
number = 24,
volume = 7,
place = {United States},
year = {Fri May 29 00:00:00 EDT 2015},
month = {Fri May 29 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 38 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Carbon nanotube–metal oxide composite electrodes for secondary lithium-based batteries
journal, June 2012

  • Marschilok, Amy C.; Schaffer, Corey P.; Takeuchi, Kenneth J.
  • Journal of Composite Materials, Vol. 47, Issue 1
  • DOI: 10.1177/0021998312446827

Modeling 3D Microstructure and Ion Transport in Porous Li-Ion Battery Electrodes
journal, January 2011

  • Stephenson, David E.; Walker, Bryce C.; Skelton, Cole B.
  • Journal of The Electrochemical Society, Vol. 158, Issue 7
  • DOI: 10.1149/1.3579996

Properties and Promises of Nanosized Insertion Materials for Li-Ion Batteries
journal, February 2012

  • Wagemaker, Marnix; Mulder, Fokko M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2001793

Chemical and Morphological Characteristics of ALD Al 2 O 3 Thin-Film Surfaces after Immersion in pH Buffer Solutions
journal, January 2013

  • Reyes, Joel Molina; Perez Ramos, Berni M.; Islas, Carlos Zuñiga
  • Journal of The Electrochemical Society, Vol. 160, Issue 10
  • DOI: 10.1149/2.060310jes

Hard X-ray Nanotomography of Catalytic Solids at Work
journal, October 2012

  • Gonzalez-Jimenez, Ines D.; Cats, Korneel; Davidian, Thomas
  • Angewandte Chemie International Edition, Vol. 51, Issue 48
  • DOI: 10.1002/anie.201204930

Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Crystallite Size Control and Resulting Electrochemistry of Magnetite, Fe[sub 3]O[sub 4]
journal, January 2009

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3078076

Structural and magnetic characterization of the lithiated iron oxide Li x Fe 3 O 4
journal, March 1986

  • Fontcuberta, J.; Rodríguez, J.; Pernet, M.
  • Journal of Applied Physics, Vol. 59, Issue 6
  • DOI: 10.1063/1.336420

Lithium dendrite and solid electrolyte interphase investigation using OsO4
journal, November 2014


Capacity-Fading Mechanisms of LiNiO[sub 2]-Based Lithium-Ion Batteries
journal, January 2009

  • Muto, Shunsuke; Sasano, Yusuke; Tatsumi, Kazuyoshi
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3076137

In operando tracking phase transformation evolution of lithium iron phosphate with hard X-ray microscopy
journal, August 2014

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5570

In situ chemical mapping of a lithium-ion battery using full-field hard X-ray spectroscopic imaging
journal, January 2013

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Chemical Communications, Vol. 49, Issue 58
  • DOI: 10.1039/c3cc42667j

Batteries used to power implantable biomedical devices
journal, December 2012


The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Nanoscale X-ray imaging
journal, December 2010


Nanoscale Morphological and Chemical Changes of High Voltage Lithium–Manganese Rich NMC Composite Cathodes with Cycling
journal, July 2014

  • Yang, Feifei; Liu, Yijin; Martha, Surendra K.
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl502090z

Synthetic Control of Composition and Crystallite Size of Silver Hollandite, Ag x Mn 8 O 16 : Impact on Electrochemistry
journal, September 2012

  • Takeuchi, Kenneth J.; Yau, Shali Z.; Menard, Melissa C.
  • ACS Applied Materials & Interfaces, Vol. 4, Issue 10
  • DOI: 10.1021/am301443g

Measurement of three-dimensional microstructure in a LiCoO2 positive electrode
journal, April 2011


NIH Image to ImageJ: 25 years of image analysis
journal, June 2012

  • Schneider, Caroline A.; Rasband, Wayne S.; Eliceiri, Kevin W.
  • Nature Methods, Vol. 9, Issue 7
  • DOI: 10.1038/nmeth.2089

Study on Microstructural Deformation of Working Sn and SnSb Anode Particles for Li-Ion Batteries by in Situ Transmission X-ray Microscopy
journal, October 2011

  • Chao, Sung-Chieh; Song, Yen-Fang; Wang, Chun-Chieh
  • The Journal of Physical Chemistry C, Vol. 115, Issue 44
  • DOI: 10.1021/jp206829q

New Insight into the Solid Electrolyte Interphase with Use of a Focused Ion Beam
journal, December 2005

  • Zhang, Hong-Li; Li, Feng; Liu, Chang
  • The Journal of Physical Chemistry B, Vol. 109, Issue 47
  • DOI: 10.1021/jp053311a

Effect of Particle Size on Lithium Intercalation into α-Fe[sub 2]O[sub 3]
journal, January 2003

  • Larcher, D.; Masquelier, C.; Bonnin, D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 1
  • DOI: 10.1149/1.1528941

Synthesis and Electrochemistry of Silver Hollandite
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Lee, Chia-Ying
  • Electrochemical and Solid-State Letters, Vol. 13, Issue 8
  • DOI: 10.1149/1.3428747

The Electrochemistry of Silver Hollandite Nanorods, Ag x Mn 8 O 16 : Enhancement of Electrochemical Battery Performance via Dimensional and Compositional Control
journal, January 2013

  • Takeuchi, Kenneth J.; Yau, Shali Z.; Subramanian, Aditya
  • Journal of The Electrochemical Society, Vol. 160, Issue 5
  • DOI: 10.1149/2.014305jes

Characterization of Reinforcement Distribution in Cast Al-Alloy/SiCp Composites
journal, February 1998


Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Synthesis and rate performance of Fe3O4-based Cu nanostructured electrodes for Li ion batteries
journal, May 2011


In Situ Three-Dimensional Synchrotron X-Ray Nanotomography of the (De)lithiation Processes in Tin Anodes
journal, March 2014

  • Wang, Jiajun; Chen-Wiegart, Yu-chen Karen; Wang, Jun
  • Angewandte Chemie International Edition, Vol. 53, Issue 17
  • DOI: 10.1002/anie.201310402

Statistical model for characterizing random microstructure of inclusion–matrix composites
journal, August 2007

  • Al-Ostaz, Ahmed; Diwakar, Anipindi; Alzebdeh, Khalid I.
  • Journal of Materials Science, Vol. 42, Issue 16
  • DOI: 10.1007/s10853-006-1117-1

Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy
journal, January 2013

  • Menard, Melissa C.; Takeuchi, Kenneth J.; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp52870g

Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries
journal, February 2013


Distance to Nearest Neighbor as a Measure of Spatial Relationships in Populations
journal, October 1954

  • Clark, Philip J.; Evans, Francis C.
  • Ecology, Vol. 35, Issue 4
  • DOI: 10.2307/1931034

Mesoscale Phase Distribution in Single Particles of LiFePO 4 following Lithium Deintercalation
journal, April 2013

  • Boesenberg, Ulrike; Meirer, Florian; Liu, Yijin
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400106k

Electrochemical characteristics of La–Ni–Al thin films
journal, May 2008


Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution
journal, April 2012

  • Wang, Jun; Karen Chen, Yu-chen; Yuan, Qingxi
  • Applied Physics Letters, Vol. 100, Issue 14
  • DOI: 10.1063/1.3701579

LiFePO4 with enhanced performance synthesized by a novel synthetic route
journal, October 2008


Electrochemical activity of nanocrystalline Fe3O4 in aprotic Li and Na salt electrolytes
journal, September 2008


Characterization of Nanoreinforcement Dispersion in Inorganic Nanocomposites: A Review
journal, May 2014

  • Saheb, Nouari; Qadir, Najam; Siddiqui, Muhammad
  • Materials, Vol. 7, Issue 6
  • DOI: 10.3390/ma7064148

The structure of magnetite: Symmetry of cubic spinels
journal, March 1986


Ohmic Drop in LiFePO 4 Based Lithium Battery Cathodes Containing Agglomerates
journal, January 2012

  • Cornut, R.; Lepage, D.; Schougaard, S. B.
  • Journal of The Electrochemical Society, Vol. 159, Issue 6
  • DOI: 10.1149/2.081206jes

Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites
journal, August 2013


A transmission electron microscopy study of crack formation and propagation in electrochemically cycled graphite electrode in lithium-ion cells
journal, October 2011


First Cross-Section Observation of an All Solid-State Lithium-Ion “Nanobattery” by Transmission Electron Microscopy
journal, March 2008

  • Brazier, A.; Dupont, L.; Dantras-Laffont, L.
  • Chemistry of Materials, Vol. 20, Issue 6
  • DOI: 10.1021/cm7033933

Synthesis of high-voltage spinel cathode material with tunable particle size and improved temperature durability for lithium ion battery
journal, September 2014


The Effect of Carbon Additives on the Microstructure and Conductivity of Alkaline Battery Cathodes
journal, January 2014

  • Nevers, Douglas R.; Peterson, Serena W.; Robertson, Logan
  • Journal of The Electrochemical Society, Vol. 161, Issue 10
  • DOI: 10.1149/2.0771410jes

Nanosize Effect on High-Rate Li-Ion Intercalation in LiCoO 2 Electrode
journal, June 2007

  • Okubo, Masashi; Hosono, Eiji; Kim, Jedeok
  • Journal of the American Chemical Society, Vol. 129, Issue 23
  • DOI: 10.1021/ja0681927

Radial Distribution of Electron Density in Magnetite, Fe 3 O 4
journal, October 1997


Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties
journal, February 2010

  • Faiyas, A. P. A.; Vinod, E. M.; Joseph, J.
  • Journal of Magnetism and Magnetic Materials, Vol. 322, Issue 4
  • DOI: 10.1016/j.jmmm.2009.09.064

Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries
journal, January 2010

  • Komaba, Shinichi; Mikumo, Takashi; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3254160

Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

Static and dynamic magnetic properties of spherical magnetite nanoparticles
journal, September 2003

  • Goya, G. F.; Berquó, T. S.; Fonseca, F. C.
  • Journal of Applied Physics, Vol. 94, Issue 5
  • DOI: 10.1063/1.1599959

Effect of particle size on rate capability and cyclic stability of LiNi0.5Mn1.5O4 cathode for high-voltage lithium ion battery
journal, September 2014

  • Xue, Liang; Li, Xiaoping; Liao, Youhao
  • Journal of Solid State Electrochemistry, Vol. 19, Issue 2
  • DOI: 10.1007/s10008-014-2635-4

Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity
journal, April 2013


Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography
journal, February 2004

  • Borbély, A.; Csikor, F. F.; Zabler, S.
  • Materials Science and Engineering: A, Vol. 367, Issue 1-2
  • DOI: 10.1016/j.msea.2003.09.068

Lithium Ion Cell Performance Enhancement Using Aqueous LiFePO 4 Cathode Dispersions and Polyethyleneimine Dispersant
journal, November 2012

  • Li, Jianlin; Armstrong, Beth L.; Kiggans, Jim
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.037302jes

Works referencing / citing this record:

Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions
journal, March 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502471

Multi-electron transfer enabled by topotactic reaction in magnetite
journal, April 2019


A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries
journal, March 2017


Nanostructured Functional Hydrogels as an Emerging Platform for Advanced Energy Technologies
journal, August 2018


Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
text, January 2015

  • Knehr, K. W.; Brady, Nicholas William; Cama, Christina A.
  • Columbia University
  • DOI: 10.7916/d83r0tcd

Review: applications, effects and the prospects for electrospun nanofibrous mats in membrane separation
journal, September 2019


Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
journal, January 2015

  • Knehr, K. W.; Brady, Nicholas W.; Cama, Christina A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0961514jes