skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry

Abstract

Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion. Electrochemical testing showed that Fe3O4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for the dispersed Fe3O4 composites relative to the aggregated Fe3O4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe3O4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe3O4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.

Authors:
;  [1];  [2];  [2];  [2];  [3];  [2];  [2];  [3];  [1];  [1]
  1. Stony Brook Univ., Stony Brook, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Columbia Univ., New York, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Energy Frontier Research Centers (EFRC) (United States). Center for Mesoscale Transport Properties (m2M)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1287086
Report Number(s):
BNL-112124-2016-JA
Journal ID: ISSN 1944-8244
Grant/Contract Number:  
SC0012704; SC0012673
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 8; Journal Issue: 18; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; magnetite; composite; aggregate; EXAFS; lithium-ion battery; electrochemical impedance spectroscopy; TXM

Citation Formats

David C. Bock, Takeuchi, Kenneth J., Pelliccione, Christopher J., Zhang, Wei, Wang, Jiajun, Knehr, K. W., Wang, Jun, Wang, Feng, West, Alan C., Marschilok, Amy C., and Takeuchi, Esther S. Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry. United States: N. p., 2016. Web. https://doi.org/10.1021/acsami.6b01134.
David C. Bock, Takeuchi, Kenneth J., Pelliccione, Christopher J., Zhang, Wei, Wang, Jiajun, Knehr, K. W., Wang, Jun, Wang, Feng, West, Alan C., Marschilok, Amy C., & Takeuchi, Esther S. Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry. United States. https://doi.org/10.1021/acsami.6b01134
David C. Bock, Takeuchi, Kenneth J., Pelliccione, Christopher J., Zhang, Wei, Wang, Jiajun, Knehr, K. W., Wang, Jun, Wang, Feng, West, Alan C., Marschilok, Amy C., and Takeuchi, Esther S. Wed . "Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry". United States. https://doi.org/10.1021/acsami.6b01134. https://www.osti.gov/servlets/purl/1287086.
@article{osti_1287086,
title = {Dispersion of nanocrystalline Fe3O4 within composite electrodes: Insights on battery-related electrochemistry},
author = {David C. Bock and Takeuchi, Kenneth J. and Pelliccione, Christopher J. and Zhang, Wei and Wang, Jiajun and Knehr, K. W. and Wang, Jun and Wang, Feng and West, Alan C. and Marschilok, Amy C. and Takeuchi, Esther S.},
abstractNote = {Aggregation of nanosized materials in composite lithium-ion-battery electrodes can be a significant factor influencing electrochemical behavior. In this study, aggregation was controlled in magnetite, Fe3O4, composite electrodes via oleic acid capping and subsequent dispersion in a carbon black matrix. A heat treatment process was effective in the removal of the oleic acid capping agent while preserving a high degree of Fe3O4 dispersion. Electrochemical testing showed that Fe3O4 dispersion is initially beneficial in delivering a higher functional capacity, in agreement with continuum model simulations. However, increased capacity fade upon extended cycling was observed for the dispersed Fe3O4 composites relative to the aggregated Fe3O4 composites. X-ray absorption spectroscopy measurements of electrodes post cycling indicated that the dispersed Fe3O4 electrodes are more oxidized in the discharged state, consistent with reduced reversibility compared with the aggregated sample. Higher charge-transfer resistance for the dispersed sample after cycling suggests increased surface-film formation on the dispersed, high-surface-area nanocrystalline Fe3O4 compared to the aggregated materials. Furthermore, this study provides insight into the specific effects of aggregation on electrochemistry through a multiscale view of mechanisms for magnetite composite electrodes.},
doi = {10.1021/acsami.6b01134},
journal = {ACS Applied Materials and Interfaces},
number = 18,
volume = 8,
place = {United States},
year = {2016},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Batteries used to power implantable biomedical devices
journal, December 2012


Lithium battery having a large capacity using Fe3O4 as a cathode material
journal, August 2005


Electrochemical Insertion of Li and Na Ions into Nanocrystalline Fe[sub 3]O[sub 4] and α-Fe[sub 2]O[sub 3] for Rechargeable Batteries
journal, January 2010

  • Komaba, Shinichi; Mikumo, Takashi; Yabuuchi, Naoaki
  • Journal of The Electrochemical Society, Vol. 157, Issue 1
  • DOI: 10.1149/1.3254160

Structural characterization of the lithiated iron oxides LixFe3O4 and LixFe2O3 (0<x<2)
journal, June 1982


Structural and magnetic characterization of the lithiated iron oxide Li x Fe 3 O 4
journal, March 1986

  • Fontcuberta, J.; Rodríguez, J.; Pernet, M.
  • Journal of Applied Physics, Vol. 59, Issue 6
  • DOI: 10.1063/1.336420

Lithium insertion into Fe3O4
journal, November 1988


Mesoscale Phase Distribution in Single Particles of LiFePO 4 following Lithium Deintercalation
journal, April 2013

  • Boesenberg, Ulrike; Meirer, Florian; Liu, Yijin
  • Chemistry of Materials, Vol. 25, Issue 9
  • DOI: 10.1021/cm400106k

Effect of the particle size on the electrochemical performance of nano-Li2FeSiO4/C composites
journal, August 2013


Properties and Promises of Nanosized Insertion Materials for Li-Ion Batteries
journal, February 2012

  • Wagemaker, Marnix; Mulder, Fokko M.
  • Accounts of Chemical Research, Vol. 46, Issue 5
  • DOI: 10.1021/ar2001793

Effect of Particle Size on Lithium Intercalation into α-Fe[sub 2]O[sub 3]
journal, January 2003

  • Larcher, D.; Masquelier, C.; Bonnin, D.
  • Journal of The Electrochemical Society, Vol. 150, Issue 1
  • DOI: 10.1149/1.1528941

Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries
journal, September 2000

  • Poizot, P.; Laruelle, S.; Grugeon, S.
  • Nature, Vol. 407, Issue 6803, p. 496-499
  • DOI: 10.1038/35035045

Crystallite Size Control and Resulting Electrochemistry of Magnetite, Fe[sub 3]O[sub 4]
journal, January 2009

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Electrochemical and Solid-State Letters, Vol. 12, Issue 4
  • DOI: 10.1149/1.3078076

Nanocrystalline Magnetite: Synthetic Crystallite Size Control and Resulting Magnetic and Electrochemical Properties
journal, January 2010

  • Zhu, Shali; Marschilok, Amy C.; Takeuchi, Esther S.
  • Journal of The Electrochemical Society, Vol. 157, Issue 11
  • DOI: 10.1149/1.3478667

Variation in the iron oxidation states of magnetite nanocrystals as a function of crystallite size: The impact on electrochemical capacity
journal, April 2013


Electrochemical discharge of nanocrystalline magnetite: structure analysis using X-ray diffraction and X-ray absorption spectroscopy
journal, January 2013

  • Menard, Melissa C.; Takeuchi, Kenneth J.; Marschilok, Amy C.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 42
  • DOI: 10.1039/c3cp52870g

Characterization of ZnS Nanoparticle Aggregation using Photoluminescence
journal, February 2011


Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation
journal, January 2005

  • Maillard, F.; Schreier, S.; Hanzlik, M.
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 2, p. 385-393
  • DOI: 10.1039/B411377B

Effect of Au nano-particle aggregation on the deactivation of the AuCl3/AC catalyst for acetylene hydrochlorination
journal, May 2015

  • Dai, Bin; Wang, Qinqin; Yu, Feng
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep10553

Ultrasmall particles and nanocomposites: state of the art
journal, January 2013

  • Kharissova, Oxana V.; Kharisov, Boris I.; Jiménez-Pérez, Victor Manuel
  • RSC Advances, Vol. 3, Issue 45
  • DOI: 10.1039/c3ra43418d

Modeling the Mesoscale Transport of Lithium-Magnetite Electrodes Using Insight from Discharge and Voltage Recovery Experiments
journal, January 2015

  • Knehr, K. W.; Brady, Nicholas W.; Cama, Christina A.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0961514jes

Automated markerless full field hard x-ray microscopic tomography at sub-50 nm 3-dimension spatial resolution
journal, April 2012

  • Wang, Jun; Karen Chen, Yu-chen; Yuan, Qingxi
  • Applied Physics Letters, Vol. 100, Issue 14
  • DOI: 10.1063/1.3701579

Nanoscale Hard X-Ray Microscopy Methods for Materials Studies
journal, July 2013


Applications of Synchrotron-Based X-ray Microprobes
journal, June 2001

  • Bertsch, Paul M.; Hunter, Douglas B.
  • Chemical Reviews, Vol. 101, Issue 6
  • DOI: 10.1021/cr990070s

In-situ Scanning Transmission X-Ray Microscopy of Catalytic Solids and Related Nanomaterials
journal, March 2010

  • de Groot, Frank M. F.; de Smit, Emiel; van Schooneveld, Matti M.
  • ChemPhysChem, Vol. 11, Issue 5
  • DOI: 10.1002/cphc.200901023

Self-assembled (SA) bilayer molecular coating on magnetic nanoparticles
journal, September 2001


The Scherrer Formula for X-Ray Particle Size Determination
journal, November 1939


Mesoscale Transport in Magnetite Electrodes for Lithium-Ion Batteries
journal, September 2015


IFEFFIT  : interactive XAFS analysis and FEFF fitting
journal, March 2001


ATHENA , ARTEMIS , HEPHAESTUS : data analysis for X-ray absorption spectroscopy using IFEFFIT
journal, June 2005


Ab initio curved-wave x-ray-absorption fine structure
journal, September 1991


Theoretical x-ray absorption fine structure standards
journal, July 1991

  • Rehr, J. J.; Mustre de Leon, J.; Zabinsky, S. I.
  • Journal of the American Chemical Society, Vol. 113, Issue 14
  • DOI: 10.1021/ja00014a001

Radial Distribution of Electron Density in Magnetite, Fe 3 O 4
journal, October 1997


Vacancy Ordering in γ-Fe 2 O 3 : Synchrotron X-ray Powder Diffraction and High-Resolution Electron Microscopy Studies
journal, April 1995

  • Shmakov, A. N.; Kryukova, G. N.; Tsybulya, S. V.
  • Journal of Applied Crystallography, Vol. 28, Issue 2
  • DOI: 10.1107/S0021889894010113

2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe 3 O 4
journal, June 2015

  • Bock, David C.; Kirshenbaum, Kevin C.; Wang, Jiajun
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 24
  • DOI: 10.1021/acsami.5b02478

Insights into Ionic Transport and Structural Changes in Magnetite during Multiple-Electron Transfer Reactions
journal, March 2016

  • Zhang, Wei; Bock, David C.; Pelliccione, Christopher J.
  • Advanced Energy Materials, Vol. 6, Issue 10
  • DOI: 10.1002/aenm.201502471

Facile and economical synthesis of hierarchical carbon-coated magnetite nanocomposite particles and their applications in lithium ion battery anodes
journal, January 2012

  • Lee, Ji Eun; Yu, Seung-Ho; Lee, Dong Jun
  • Energy & Environmental Science, Vol. 5, Issue 11
  • DOI: 10.1039/c2ee22792d

Sandwich-Structured Graphene-Fe 3 O 4 @Carbon Nanocomposites for High-Performance Lithium-Ion Batteries
journal, April 2015

  • Zhao, Li; Gao, Miaomiao; Yue, Wenbo
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 18
  • DOI: 10.1021/acsami.5b01503

Self-Assembled Fe 3 O 4 Nanoparticle Clusters as High-Performance Anodes for Lithium Ion Batteries via Geometric Confinement
journal, August 2013

  • Lee, Soo Hong; Yu, Seung-Ho; Lee, Ji Eun
  • Nano Letters, Vol. 13, Issue 9
  • DOI: 10.1021/nl401952h

Preparation of rGO-wrapped magnetite nanocomposites and their energy storage properties
journal, January 2014

  • Hameed, A. Shahul; Reddy, M. V.; Chowdari, B. V. R.
  • RSC Adv., Vol. 4, Issue 109
  • DOI: 10.1039/C4RA11948G

Structural influence of porous FeO x @C nanorods on their performance as anodes of lithium-ion batteries
journal, January 2015

  • Li, Xueying; Zhang, Zhiyun; Li, Jing
  • Journal of Materials Chemistry A, Vol. 3, Issue 36
  • DOI: 10.1039/C5TA05234C

Magnetite/carbon core-shell nanorods as anode materials for lithium-ion batteries
journal, December 2008


Carbon-Encapsulated Fe 3 O 4 Nanoparticles as a High-Rate Lithium Ion Battery Anode Material
journal, April 2013

  • He, Chunnian; Wu, Shan; Zhao, Naiqin
  • ACS Nano, Vol. 7, Issue 5
  • DOI: 10.1021/nn401059h

Fe3O4 submicron spheroids as anode materials for lithium-ion batteries with stable and high electrochemical performance
journal, August 2010


Reflections on the history of electrochemical impedance spectroscopy
journal, January 2006


Kinetics of rapid electrode reactions
journal, January 1947


Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material
journal, February 2010


A high-performance anode for lithium ion batteries: Fe 3 O 4 microspheres encapsulated in hollow graphene shells
journal, January 2015

  • Jiang, Yu; Jiang, Zhong-Jie; Yang, Lufeng
  • Journal of Materials Chemistry A, Vol. 3, Issue 22
  • DOI: 10.1039/C5TA01848J

Combined XRD, EXAFS, and Mossbauer Studies of the Reduction by Lithium of α-Fe2O3 with Various Particle Sizes
journal, January 2003

  • Larcher, D.; Bonnin, D.; Cortes, R.
  • Journal of The Electrochemical Society, Vol. 150, Issue 12, p. A1643-A1650
  • DOI: 10.1149/1.1622959

In situ X-ray diffraction and X-ray absorption studies of high-rate lithium-ion batteries
journal, January 2001


X-ray diffraction and EXAFS analysis of materials for lithium-based rechargeable batteries
journal, December 2013


In Situ XAFS Study of the Capacity Fading Mechanisms in ZnO Anodes for Lithium-Ion Batteries
journal, January 2015

  • Pelliccione, Christopher J.; Ding, Yujia; Timofeeva, Elena V.
  • Journal of The Electrochemical Society, Vol. 162, Issue 10
  • DOI: 10.1149/2.1011509jes

In Situ X-ray Absorption Spectroscopy Study of the Capacity Fading Mechanism in Hybrid Sn 3 O 2 (OH) 2 /Graphite Battery Anode Nanomaterials
journal, January 2015

  • Pelliccione, Christopher J.; Timofeeva, Elena V.; Segre, Carlo U.
  • Chemistry of Materials, Vol. 27, Issue 2
  • DOI: 10.1021/cm504101h

In Situ Electrochemical XAFS Studies on an Iron Fluoride High-Capacity Cathode Material for Rechargeable Lithium Batteries
journal, May 2013

  • Zhang, Wei; Duchesne, Paul N.; Gong, Zheng-Liang
  • The Journal of Physical Chemistry C, Vol. 117, Issue 22
  • DOI: 10.1021/jp401200u

High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region
journal, April 2001


Oxidation state and coordination of Fe in minerals: An Fe K- XANES spectroscopic study
journal, May 2001

  • Wilke, Max; Farges, François; Petit, Pierre-Emmanuel
  • American Mineralogist, Vol. 86, Issue 5-6
  • DOI: 10.2138/am-2001-5-612

The structure of magnetite: Symmetry of cubic spinels
journal, March 1986


EXAFS as a tool to interrogate the size and shape of mono and bimetallic catalyst nanoparticles
journal, January 2010

  • Beale, Andrew M.; Weckhuysen, Bert M.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 21
  • DOI: 10.1039/b925206a

Carbon Coated Fe 3 O 4 Nanospindles as a Superior Anode Material for Lithium-Ion Batteries
journal, December 2008

  • Zhang, Wei-Ming; Wu, Xing-Long; Hu, Jin-Song
  • Advanced Functional Materials, Vol. 18, Issue 24
  • DOI: 10.1002/adfm.200801386

Conversion mechanisms of cobalt oxide anode for Li-ion battery: In situ X-ray absorption fine structure studies
journal, January 2015


Searching for new anode materials for the Li-ion technology: time to deviate from the usual path
journal, July 2001


Investigation of SEI Layer Formation in Conversion Iron Fluoride Cathodes by Combined STEM/EELS and XPS
journal, April 2015

  • Sina, M.; Thorpe, R.; Rangan, S.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 18
  • DOI: 10.1021/acs.jpcc.5b02058

Theory of SEI Formation in Rechargeable Batteries: Capacity Fade, Accelerated Aging and Lifetime Prediction
journal, December 2012

  • Pinson, Matthew B.; Bazant, Martin Z.
  • Journal of The Electrochemical Society, Vol. 160, Issue 2
  • DOI: 10.1149/2.044302jes

Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites
journal, January 2010

  • Gmitter, Andrew J.; Badway, Fadwa; Rangan, Sylvie
  • Journal of Materials Chemistry, Vol. 20, Issue 20
  • DOI: 10.1039/b923908a

Reversible reduction of Li 2 CO 3
journal, January 2015

  • Tian, Na; Hua, Chunxiu; Wang, Zhaoxiang
  • Journal of Materials Chemistry A, Vol. 3, Issue 27
  • DOI: 10.1039/C5TA02499D

An update on the reactivity of nanoparticles Co-based compounds towards Li
journal, June 2003


Mesoporous and nanowire Co 3 O 4 as negative electrodes for rechargeable lithium batteries
journal, January 2007

  • Shaju, Kuthanapillil M.; Jiao, Feng; Débart, Aurélie
  • Phys. Chem. Chem. Phys., Vol. 9, Issue 15
  • DOI: 10.1039/B617519H

The Electrochemical Reduction of Co[sub 3]O[sub 4] in a Lithium Cell
journal, January 2002

  • Larcher, D.; Sudant, G.; Leriche, J-B.
  • Journal of The Electrochemical Society, Vol. 149, Issue 3
  • DOI: 10.1149/1.1435358

Origin of Capacity Fading in Nano-Sized Co3O4 Electrodes: Electrochemical Impedance Spectroscopy Study
journal, September 2008


Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium
journal, January 2001

  • Grugeon, S.; Laruelle, S.; Herrera-Urbina, R.
  • Journal of The Electrochemical Society, Vol. 148, Issue 4
  • DOI: 10.1149/1.1353566

    Works referencing / citing this record:

    One-dimensional hybrid nanocomposite of high-density monodispersed Fe 3 O 4 nanoparticles and carbon nanotubes for high-capacity storage of lithium and sodium
    journal, January 2016

    • Wang, Xiujuan; Liu, Xiaojie; Wang, Gang
    • Journal of Materials Chemistry A, Vol. 4, Issue 47
    • DOI: 10.1039/c6ta07452a

    Multi-electron transfer enabled by topotactic reaction in magnetite
    journal, April 2019


    FeO x -Based Materials for Electrochemical Energy Storage
    journal, April 2018


    A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries
    journal, March 2017