DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments

Abstract

Efficient chemical transformations in energy conversion and storage systems depend on understanding superoxide anion (O2) electrochemistry at atomic and molecular levels. Here, in this work, a combination of experimental and theoretical techniques are used for rationalizing, and ultimately understanding, the complexity of superoxide anion (electro)chemistry in organic environments. By exploring the O2 + e ↔ O2 reaction on well-characterized metal single crystals (Au, Pt, Ir), Pt single crystal modified with a single layer of graphene (Graphene@Pt(111)), and glassy carbon (GC) in 1,2 dimethoxyethane (DME) electrolytes, we demonstrate that (i) the reaction is an outer-sphere process; (ii) the reaction product O2 can “attack” any part of the DME molecule, i.e., the C–O bond via nucleophilic reaction and the C–H bond via radical hydrogen abstraction; (iii) the adsorption of carbon-based decomposition products and the extent of formation of a “solid electrolyte interface” (“SEI”) increases in the same order as the reactivity of the substrate, i.e., Pt(hkl)/Ir(hkl) » Au(hkl)/GC > Gaphene@Pt(111); and (iv) the formation of the “SEI” layer leads to irreversible superoxide electrochemistry on Pt(hkl) and Ir(hkl) surfaces. In conclusion, we believe this fundamental insight provides a pathway for the rational design of stable organic solvents that are urgently needed for themore » development of a new generation of reliable and affordable battery systems.« less

Authors:
 [1];  [2];  [2];  [2];  [2];  [3];  [2];  [2];  [3];  [2];  [2]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division; University of Ljubljana, Faculty of Chemistry and Chemical Technology (Slovenia)
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Materials Science Division
  3. Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States). Department of Chemistry
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1352586
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 29; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; 36 MATERIALS SCIENCE; nucleophilic attack; outer-sphere reaction; radical hydrogen abstraction; solid electrolyte interface; solvent decomposition; superoxide anion; well-characterized interfaces

Citation Formats

Genorio, Bostjan, Staszak-Jirkovský, Jakub, Assary, Rajeev S., Connell, Justin G., Strmcnik, Dusan, Diesendruck, Charles E., Lopes, Pietro P., Stamenkovic, Vojislav R., Moore, Jeffrey S., Curtiss, Larry A., and Markovic, Nenad M. Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments. United States: N. p., 2016. Web. doi:10.1021/acs.jpcc.5b12230.
Genorio, Bostjan, Staszak-Jirkovský, Jakub, Assary, Rajeev S., Connell, Justin G., Strmcnik, Dusan, Diesendruck, Charles E., Lopes, Pietro P., Stamenkovic, Vojislav R., Moore, Jeffrey S., Curtiss, Larry A., & Markovic, Nenad M. Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments. United States. https://doi.org/10.1021/acs.jpcc.5b12230
Genorio, Bostjan, Staszak-Jirkovský, Jakub, Assary, Rajeev S., Connell, Justin G., Strmcnik, Dusan, Diesendruck, Charles E., Lopes, Pietro P., Stamenkovic, Vojislav R., Moore, Jeffrey S., Curtiss, Larry A., and Markovic, Nenad M. Tue . "Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments". United States. https://doi.org/10.1021/acs.jpcc.5b12230. https://www.osti.gov/servlets/purl/1352586.
@article{osti_1352586,
title = {Superoxide (Electro)Chemistry on Well-Defined Surfaces in Organic Environments},
author = {Genorio, Bostjan and Staszak-Jirkovský, Jakub and Assary, Rajeev S. and Connell, Justin G. and Strmcnik, Dusan and Diesendruck, Charles E. and Lopes, Pietro P. and Stamenkovic, Vojislav R. and Moore, Jeffrey S. and Curtiss, Larry A. and Markovic, Nenad M.},
abstractNote = {Efficient chemical transformations in energy conversion and storage systems depend on understanding superoxide anion (O2–) electrochemistry at atomic and molecular levels. Here, in this work, a combination of experimental and theoretical techniques are used for rationalizing, and ultimately understanding, the complexity of superoxide anion (electro)chemistry in organic environments. By exploring the O2 + e– ↔ O2– reaction on well-characterized metal single crystals (Au, Pt, Ir), Pt single crystal modified with a single layer of graphene (Graphene@Pt(111)), and glassy carbon (GC) in 1,2 dimethoxyethane (DME) electrolytes, we demonstrate that (i) the reaction is an outer-sphere process; (ii) the reaction product O2– can “attack” any part of the DME molecule, i.e., the C–O bond via nucleophilic reaction and the C–H bond via radical hydrogen abstraction; (iii) the adsorption of carbon-based decomposition products and the extent of formation of a “solid electrolyte interface” (“SEI”) increases in the same order as the reactivity of the substrate, i.e., Pt(hkl)/Ir(hkl) » Au(hkl)/GC > Gaphene@Pt(111); and (iv) the formation of the “SEI” layer leads to irreversible superoxide electrochemistry on Pt(hkl) and Ir(hkl) surfaces. In conclusion, we believe this fundamental insight provides a pathway for the rational design of stable organic solvents that are urgently needed for the development of a new generation of reliable and affordable battery systems.},
doi = {10.1021/acs.jpcc.5b12230},
journal = {Journal of Physical Chemistry. C},
number = 29,
volume = 120,
place = {United States},
year = {Tue Feb 09 00:00:00 EST 2016},
month = {Tue Feb 09 00:00:00 EST 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 19 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The organic chemistry of superoxide
journal, January 1977


How super is superoxide?
journal, December 1981

  • Sawyer, Donald T.; Valentine, Joan S.
  • Accounts of Chemical Research, Vol. 14, Issue 12
  • DOI: 10.1021/ar00072a005

Effects of media and electrode materials on the electrochemical reduction of dioxygen
journal, September 1982

  • Sawyer, Donald T.; Chiericato, Glaico.; Angelis, Charles T.
  • Analytical Chemistry, Vol. 54, Issue 11
  • DOI: 10.1021/ac00248a014

Electrochemical studies of the reactivity of superoxide ion with several alkyl halides in dimethyl sulfoxide
journal, July 1970

  • Merritt, Margaret V.; Sawyer, Donald T.
  • The Journal of Organic Chemistry, Vol. 35, Issue 7
  • DOI: 10.1021/jo00832a011

Hydroxide ion: an effective one-electron reducing agent?
journal, December 1988

  • Sawyer, Donald T.; Roberts, Julian L.
  • Accounts of Chemical Research, Vol. 21, Issue 12
  • DOI: 10.1021/ar00156a006

Voltammetric evaluation of the effective acidities (pKa') for Broensted acids in aprotic solvents
journal, August 1984

  • Barrette, William C.; Johnson, H. W.; Sawyer, Donald T.
  • Analytical Chemistry, Vol. 56, Issue 11
  • DOI: 10.1021/ac00275a030

Reactivity of superoxide ion with carbonyl compounds in aprotic solvents
journal, January 1979

  • Gibian, Morton J.; Sawyer, Donald T.; Ungermann, Timothy
  • Journal of the American Chemical Society, Vol. 101, Issue 3
  • DOI: 10.1021/ja00497a026

Redox chemistry of dioxygen species
journal, March 1979

  • Wilshire, John; Sawyer, Donald T.
  • Accounts of Chemical Research, Vol. 12, Issue 3
  • DOI: 10.1021/ar50135a005

Surface science studies of model fuel cell electrocatalysts
journal, April 2002


Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Stability of Solvents against Superoxide Radical Species for the Electrolyte of Lithium-Air Battery
journal, January 2012

  • Takechi, K.; Higashi, S.; Mizuno, F.
  • ECS Electrochemistry Letters, Vol. 1, Issue 1
  • DOI: 10.1149/2.010201eel

Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-Air Batteries
journal, January 2010

  • Lu, Yi-Chun; Gasteiger, Hubert A.; Crumlin, Ethan
  • Journal of The Electrochemical Society, Vol. 157, Issue 9
  • DOI: 10.1149/1.3462981

Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Alkaline Solution:  Rotating Ring Disk Pt( hkl ) Studies
journal, April 1996

  • Marković, Nenad M.; Gasteiger, Hubert A.; Ross, Philip N.
  • The Journal of Physical Chemistry, Vol. 100, Issue 16
  • DOI: 10.1021/jp9533382

Water as a Promoter and Catalyst for Dioxygen Electrochemistry in Aqueous and Organic Media
journal, October 2015

  • Staszak-Jirkovský, Jakub; Subbaraman, Ram; Strmcnik, Dusan
  • ACS Catalysis, Vol. 5, Issue 11
  • DOI: 10.1021/acscatal.5b01779

The role of non-covalent interactions in electrocatalytic fuel-cell reactions on platinum
journal, August 2009

  • Strmcnik, D.; Kodama, K.; van der Vliet, D.
  • Nature Chemistry, Vol. 1, Issue 6
  • DOI: 10.1038/nchem.330

The critical role of phase-transfer catalysis in aprotic sodium oxygen batteries
journal, May 2015

  • Xia, Chun; Black, Robert; Fernandes, Russel
  • Nature Chemistry, Vol. 7, Issue 6
  • DOI: 10.1038/nchem.2260

Palladium-Catalyzed Reductive ortho -Arylation: Evidence for the Decomposition of 1,2-Dimethoxyethane and Subsequent Arylpalladium(II) Reduction
journal, November 2010

  • Martins, Andrew; Candito, David A.; Lautens, Mark
  • Organic Letters, Vol. 12, Issue 22
  • DOI: 10.1021/ol1019037

Use of the 1,1′-dimethylferrocene oxidation process for the calibration of the reference electrode potential in organic solvents immiscible with water
journal, May 2008


Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

Anion Adsorption, CO Oxidation, and Oxygen Reduction Reaction on a Au(100) Surface:  The pH Effect
journal, January 2004

  • Blizanac, B. B.; Lucas, C. A.; Gallagher, M. E.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 2
  • DOI: 10.1021/jp036483l

Selective catalysts for the hydrogen oxidation and oxygen reduction reactions by patterning of platinum with calix[4]arene molecules
journal, October 2010

  • Genorio, Bostjan; Strmcnik, Dusan; Subbaraman, Ram
  • Nature Materials, Vol. 9, Issue 12
  • DOI: 10.1038/nmat2883

Tailoring the Selectivity and Stability of Chemically Modified Platinum Nanocatalysts To Design Highly Durable Anodes for PEM Fuel Cells
journal, May 2011

  • Genorio, Bostjan; Subbaraman, Ram; Strmcnik, Dusan
  • Angewandte Chemie International Edition, Vol. 50, Issue 24
  • DOI: 10.1002/anie.201100744

A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries
journal, September 2010


Formate anion: The physical force field
journal, February 1981


Works referencing / citing this record:

O 2 reduction on a Au film electrode in an ionic liquid in the absence and presence of Mg 2+ ions: Product formation and adlayer dynamics
journal, January 2019

  • Jusys, Zenonas; Schnaidt, Johannes; Behm, R. Jürgen
  • The Journal of Chemical Physics, Vol. 150, Issue 4
  • DOI: 10.1063/1.5051982

Oxygen reactions on Pt{ hkl } in a non-aqueous Na + electrolyte: site selective stabilisation of a sodium peroxy species
journal, January 2019

  • Galloway, Thomas A.; Dong, Jin-Chao; Li, Jian-Feng
  • Chemical Science, Vol. 10, Issue 10
  • DOI: 10.1039/c8sc05489d

Energy and fuels from electrochemical interfaces
journal, December 2016

  • Stamenkovic, Vojislav R.; Strmcnik, Dusan; Lopes, Pietro P.
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4738

Mechanism and performance of lithium–oxygen batteries – a perspective
journal, January 2017

  • Mahne, Nika; Fontaine, Olivier; Thotiyl, Musthafa Ottakam
  • Chemical Science, Vol. 8, Issue 10
  • DOI: 10.1039/c7sc02519j

Tuning the Selectivity and Activity of Electrochemical Interfaces with Defective Graphene Oxide and Reduced Graphene Oxide
journal, August 2019

  • Genorio, Bostjan; Harrison, Katharine L.; Connell, Justin G.
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 37
  • DOI: 10.1021/acsami.9b13391