DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations

Abstract

A viable Li/O2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li2O2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), on surfaces of Li2O2. Comparisons are made between the two predominant Li2O2 surface charge states by calculating decomposition pathways on peroxide-terminated (O22–) and superoxide-terminated (O21–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li2O2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless,more » the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O2.« less

Authors:
 [1];  [2];  [3];  [3];  [4]
  1. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering
  2. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Physics
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering and Applied Physics Program
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1325870
Report Number(s):
LLNL-JRNL-666496
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 119; Journal Issue: 17; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE

Citation Formats

Kumar, Nitin, Radin, Maxwell D., Wood, Brandon C., Ogitsu, Tadashi, and Siegel, Donald J. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations. United States: N. p., 2015. Web. doi:10.1021/acs.jpcc.5b00256.
Kumar, Nitin, Radin, Maxwell D., Wood, Brandon C., Ogitsu, Tadashi, & Siegel, Donald J. Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations. United States. https://doi.org/10.1021/acs.jpcc.5b00256
Kumar, Nitin, Radin, Maxwell D., Wood, Brandon C., Ogitsu, Tadashi, and Siegel, Donald J. Mon . "Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations". United States. https://doi.org/10.1021/acs.jpcc.5b00256. https://www.osti.gov/servlets/purl/1325870.
@article{osti_1325870,
title = {Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations},
author = {Kumar, Nitin and Radin, Maxwell D. and Wood, Brandon C. and Ogitsu, Tadashi and Siegel, Donald J.},
abstractNote = {A viable Li/O2 battery will require the development of stable electrolytes that do not continuously decompose during cell operation. In some recent experiments it is suggested that reactions occurring at the interface between the liquid electrolyte and the solid lithium peroxide (Li2O2) discharge phase are a major contributor to these instabilities. To clarify the mechanisms associated with these reactions, a variety of atomistic simulation techniques, classical Monte Carlo, van der Waals-augmented density functional theory, ab initio molecular dynamics, and various solvation models, are used to study the initial decomposition of the common electrolyte solvent, dimethoxyethane (DME), on surfaces of Li2O2. Comparisons are made between the two predominant Li2O2 surface charge states by calculating decomposition pathways on peroxide-terminated (O22–) and superoxide-terminated (O21–) facets. For both terminations, DME decomposition proceeds exothermically via a two-step process comprised of hydrogen abstraction (H-abstraction) followed by nucleophilic attack. In the first step, abstracted H dissociates a surface O2 dimer, and combines with a dissociated oxygen to form a hydroxide ion (OH–). In the remaining surface oxygen then attacks the DME, resulting in a DME fragment that is strongly bound to the Li2O2 surface. DME decomposition is predicted to be more exothermic on the peroxide facet; nevertheless, the rate of DME decomposition is faster on the superoxide termination. The impact of solvation (explicit vs implicit) and an applied electric field on the reaction energetics are investigated. Finally, our calculations suggest that surface-mediated electrolyte decomposition should out-pace liquid-phase processes such as solvent auto-oxidation by dissolved O2.},
doi = {10.1021/acs.jpcc.5b00256},
journal = {Journal of Physical Chemistry. C},
number = 17,
volume = 119,
place = {United States},
year = {Mon Apr 13 00:00:00 EDT 2015},
month = {Mon Apr 13 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

A Polymer Electrolyte-Based Rechargeable Lithium/Oxygen Battery
journal, January 1996

  • Abraham, K. M.; Jiang, Z.
  • Journal of The Electrochemical Society, Vol. 143, Issue 1, p. 1-5
  • DOI: 10.1149/1.1836378

Characterization of the Lithium/Oxygen Organic Electrolyte Battery
journal, January 2002

  • Read, J.
  • Journal of The Electrochemical Society, Vol. 149, Issue 9, p. A1190-A1195
  • DOI: 10.1149/1.1498256

Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery
journal, January 2006

  • Read, J.
  • Journal of The Electrochemical Society, Vol. 153, Issue 1, p. A96-A100
  • DOI: 10.1149/1.2131827

Rechargeable Li 2 O 2 Electrode for Lithium Batteries
journal, February 2006

  • Ogasawara, Takeshi; Débart, Aurélie; Holzapfel, Michael
  • Journal of the American Chemical Society, Vol. 128, Issue 4
  • DOI: 10.1021/ja056811q

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

An improved high-performance lithium–air battery
journal, June 2012

  • Jung, Hun-Gi; Hassoun, Jusef; Park, Jin-Bum
  • Nature Chemistry, Vol. 4, Issue 7
  • DOI: 10.1038/nchem.1376

Rechargeable Li-Air Batteries with Carbonate-Based Liquid Electrolytes
journal, January 2010


The Lithium-Oxygen Battery with Ether-Based Electrolytes
journal, July 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Drewett, Nicholas E.
  • Angewandte Chemie International Edition, Vol. 50, Issue 37, p. 8609-8613
  • DOI: 10.1002/anie.201102357

Reactions in the Rechargeable Lithium–O 2 Battery with Alkyl Carbonate Electrolytes
journal, May 2011

  • Freunberger, Stefan A.; Chen, Yuhui; Peng, Zhangquan
  • Journal of the American Chemical Society, Vol. 133, Issue 20
  • DOI: 10.1021/ja2021747

Computational Study of the Mechanisms of Superoxide-Induced Decomposition of Organic Carbonate-Based Electrolytes
journal, February 2011

  • Bryantsev, Vyacheslav S.; Blanco, Mario
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 5
  • DOI: 10.1021/jz1016526

On the Efficacy of Electrocatalysis in Nonaqueous Li–O 2 Batteries
journal, November 2011

  • McCloskey, Bryan D.; Scheffler, Rouven; Speidel, Angela
  • Journal of the American Chemical Society, Vol. 133, Issue 45
  • DOI: 10.1021/ja207229n

Increased Stability Toward Oxygen Reduction Products for Lithium-Air Batteries with Oligoether-Functionalized Silane Electrolytes
journal, December 2011

  • Zhang, Zhengcheng; Lu, Jun; Assary, Rajeev S.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 51
  • DOI: 10.1021/jp2087412

Screening for Superoxide Reactivity in Li-O 2 Batteries: Effect on Li 2 O 2 /LiOH Crystallization
journal, February 2012

  • Black, Robert; Oh, Si Hyoung; Lee, Jin-Hyon
  • Journal of the American Chemical Society, Vol. 134, Issue 6
  • DOI: 10.1021/ja2111543

Spectroscopic Characterization of Solid Discharge Products in Li–Air Cells with Aprotic Carbonate Electrolytes
journal, June 2011

  • Veith, Gabriel M.; Dudney, Nancy J.; Howe, Jane
  • The Journal of Physical Chemistry C, Vol. 115, Issue 29
  • DOI: 10.1021/jp2043015

Solvents’ Critical Role in Nonaqueous Lithium–Oxygen Battery Electrochemistry
journal, May 2011

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 2, Issue 10, p. 1161-1166
  • DOI: 10.1021/jz200352v

Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li–O 2 Batteries
journal, March 2012

  • McCloskey, B. D.; Speidel, A.; Scheffler, R.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 8
  • DOI: 10.1021/jz300243r

Combining Accurate O 2 and Li 2 O 2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li–O 2 Batteries
journal, August 2013

  • McCloskey, Bryan D.; Valery, Alexia; Luntz, Alan C.
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 17
  • DOI: 10.1021/jz401659f

Lithium−Air Battery: Promise and Challenges
journal, June 2010

  • Girishkumar, G.; McCloskey, B.; Luntz, A. C.
  • The Journal of Physical Chemistry Letters, Vol. 1, Issue 14
  • DOI: 10.1021/jz1005384

Limitations in Rechargeability of Li-O 2 Batteries and Possible Origins
journal, September 2012

  • McCloskey, B. D.; Bethune, D. S.; Shelby, R. M.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 20
  • DOI: 10.1021/jz301359t

Degradation and revival of Li–O2 battery cathode
journal, September 2013


Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries
journal, June 2012

  • Bryantsev, Vyacheslav S.; Faglioni, Francesco
  • The Journal of Physical Chemistry A, Vol. 116, Issue 26
  • DOI: 10.1021/jp301537w

Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O 2 •– )
journal, November 2011

  • Bryantsev, Vyacheslav S.; Giordani, Vincent; Walker, Wesley
  • The Journal of Physical Chemistry A, Vol. 115, Issue 44
  • DOI: 10.1021/jp2073914

The Identification of Stable Solvents for Nonaqueous Rechargeable Li-Air Batteries
journal, November 2012

  • Bryantsev, Vyacheslav S.; Uddin, Jasim; Giordani, Vincent
  • Journal of The Electrochemical Society, Vol. 160, Issue 1
  • DOI: 10.1149/2.027302jes

Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Electronic Structure of Lithium Peroxide Clusters and Relevance to Lithium–Air Batteries
journal, November 2012

  • Lau, Kah Chun; Assary, Rajeev S.; Redfern, Paul
  • The Journal of Physical Chemistry C, Vol. 116, Issue 45
  • DOI: 10.1021/jp306024f

Chemical reactivity of aprotic electrolytes on a solid Li 2 O 2 surface: screening solvents for Li–air batteries
journal, September 2013


Lithium Peroxide Surfaces Are Metallic, While Lithium Oxide Surfaces Are Not
journal, December 2011

  • Radin, Maxwell D.; Rodriguez, Jill F.; Tian, Feng
  • Journal of the American Chemical Society, Vol. 134, Issue 2
  • DOI: 10.1021/ja208944x

Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Why does the B3LYP hybrid functional fail for metals?
journal, July 2007

  • Paier, Joachim; Marsman, Martijn; Kresse, Georg
  • The Journal of Chemical Physics, Vol. 127, Issue 2
  • DOI: 10.1063/1.2747249

Methane Storage in Metal-Substituted Metal–Organic Frameworks: Thermodynamics, Usable Capacity, and the Impact of Enhanced Binding Sites
journal, January 2014

  • Rana, Malay Kumar; Koh, Hyun Seung; Zuberi, Haroon
  • The Journal of Physical Chemistry C, Vol. 118, Issue 6
  • DOI: 10.1021/jp4104273

Thermodynamic screening of metal-substituted MOFs for carbon capture
journal, January 2013

  • Koh, Hyun Seung; Rana, Malay Kumar; Hwang, Jinhyung
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 13
  • DOI: 10.1039/c3cp50622c

Comparing van der Waals Density Functionals for CO 2 Adsorption in Metal Organic Frameworks
journal, August 2012

  • Rana, Malay Kumar; Koh, Hyun Seung; Hwang, Jinhyung
  • The Journal of Physical Chemistry C, Vol. 116, Issue 32
  • DOI: 10.1021/jp3051164

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Projector augmented-wave method
journal, December 1994


Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)]
journal, February 1997


Hybrid functionals based on a screened Coulomb potential
journal, May 2003

  • Heyd, Jochen; Scuseria, Gustavo E.; Ernzerhof, Matthias
  • The Journal of Chemical Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.1564060

Influence of the exchange screening parameter on the performance of screened hybrid functionals
journal, December 2006

  • Krukau, Aliaksandr V.; Vydrov, Oleg A.; Izmaylov, Artur F.
  • The Journal of Chemical Physics, Vol. 125, Issue 22
  • DOI: 10.1063/1.2404663

Electronic structure of Li2O2 {0001} surfaces
journal, May 2012

  • Radin, Maxwell D.; Tian, Feng; Siegel, Donald J.
  • Journal of Materials Science, Vol. 47, Issue 21
  • DOI: 10.1007/s10853-012-6552-6

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations
journal, December 1992

  • Rappe, A. K.; Casewit, C. J.; Colwell, K. S.
  • Journal of the American Chemical Society, Vol. 114, Issue 25, p. 10024-10035
  • DOI: 10.1021/ja00051a040

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

Surface-diffusion mechanism versus electric field: Pt/Pt(001)
journal, September 2001


Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)
journal, December 1992


Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
journal, February 2014

  • Mathew, Kiran; Sundararaman, Ravishankar; Letchworth-Weaver, Kendra
  • The Journal of Chemical Physics, Vol. 140, Issue 8
  • DOI: 10.1063/1.4865107

Joint Density-Functional Theory:  Ab Initio Study of Cr 2 O 3 Surface Chemistry in Solution
journal, August 2005

  • Petrosyan, S. A.; Rigos, A. A.; Arias, T. A.
  • The Journal of Physical Chemistry B, Vol. 109, Issue 32
  • DOI: 10.1021/jp044822k

The importance of nonlinear fluid response in joint density-functional theory studies of battery systems
journal, October 2013

  • Gunceler, Deniz; Letchworth-Weaver, Kendra; Sundararaman, Ravishankar
  • Modelling and Simulation in Materials Science and Engineering, Vol. 21, Issue 7
  • DOI: 10.1088/0965-0393/21/7/074005

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The General Utility Lattice Program ( GULP )
journal, May 2003


Gordon Bell finalists I---Large-scale electronic structure calculations of high-Z metals on the BlueGene/L platform
conference, January 2006

  • Gygi, Francois; Ueberhuber, Christoph W.; Lorenz, Juergen
  • Proceedings of the 2006 ACM/IEEE conference on Supercomputing - SC '06
  • DOI: 10.1145/1188455.1188502

Architecture of Qbox: A scalable first-principles molecular dynamics code
journal, January 2008

  • Gygi, F.
  • IBM Journal of Research and Development, Vol. 52, Issue 1.2
  • DOI: 10.1147/rd.521.0137

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Optimally smooth norm-conserving pseudopotentials
journal, December 1985


Escaping free-energy minima
journal, September 2002

  • Laio, A.; Parrinello, M.
  • Proceedings of the National Academy of Sciences, Vol. 99, Issue 20
  • DOI: 10.1073/pnas.202427399

Assessing the Accuracy of Metadynamics
journal, April 2005

  • Laio, Alessandro; Rodriguez-Fortea, Antonio; Gervasio, Francesco Luigi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 14
  • DOI: 10.1021/jp045424k

Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science
journal, November 2008


First-principles study of the role of solvent in the dissociation of water over a Pt-Ru alloy
journal, August 2003


The discharge rate capability of rechargeable Li–O2 batteries
journal, January 2011

  • Lu, Yi-Chun; Kwabi, David G.; Yao, Koffi P. C.
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c1ee01500a

Density Functional Theory
book, March 2009


Pressure Dynamics in Metal–Oxygen (Metal–Air) Batteries: A Case Study on Sodium Superoxide Cells
journal, January 2014

  • Hartmann, Pascal; Grübl, Daniel; Sommer, Heino
  • The Journal of Physical Chemistry C, Vol. 118, Issue 3
  • DOI: 10.1021/jp4099478

Insights into Current Limitations of Density Functional Theory
journal, August 2008


Modeling CO2 reduction on Pt(111)
journal, January 2013

  • Shi, Chuan; O'Grady, Christopher P.; Peterson, Andrew A.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 19
  • DOI: 10.1039/c3cp50645b

Modeling the electrified solid–liquid interface
journal, November 2008


Density functional theory calculations for the hydrogen evolution reaction in an electrochemical double layer on the Pt(111) electrode
journal, January 2007

  • Skúlason, Egill; Karlberg, Gustav S.; Rossmeisl, Jan
  • Phys. Chem. Chem. Phys., Vol. 9, Issue 25
  • DOI: 10.1039/B700099E

Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery
journal, August 2014

  • Adams, Brian D.; Black, Robert; Williams, Zack
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400867

Works referencing / citing this record:

Critical Challenges in Rechargeable Aprotic Li-O 2 Batteries
journal, February 2016

  • Feng, Ningning; He, Ping; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 6, Issue 9
  • DOI: 10.1002/aenm.201502303

Achilles’ Heel of Lithium-Air Batteries: Lithium Carbonate
journal, March 2018

  • Zhao, Zhiwei; Huang, Jun; Peng, Zhangquan
  • Angewandte Chemie International Edition, Vol. 57, Issue 15
  • DOI: 10.1002/anie.201710156

1,2-Dimethoxyethane Degradation Thermodynamics in Li−O 2 Redox Environments
journal, September 2016

  • Carboni, Marco; Marrani, Andrea Giacomo; Spezia, Riccardo
  • Chemistry - A European Journal, Vol. 22, Issue 48
  • DOI: 10.1002/chem.201602375

Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen
journal, March 2019


Degradation of LiTfO/TEGME and LiTfO/DME Electrolytes in Li-O 2 Batteries
journal, January 2018

  • Carboni, Marco; Marrani, Andrea Giacomo; Spezia, Riccardo
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0331802jes

Deactivation of redox mediators in lithium-oxygen batteries by singlet oxygen
journal, March 2019