skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode

Abstract

The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH 3O - and C 2H 4 2-via a 4-electron transfer. In the case of mixtures, the salts are very prone to reactmore » with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]
  1. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering
  2. Texas A & M Univ., College Station, TX (United States). Department of Chemical Engineering, Department of Materials Science and Engineering, and Department of Chemistry
Publication Date:
Research Org.:
Texas A&M Engineering Experiment Station, College Station, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office (EE-3V)
OSTI Identifier:
1430638
Grant/Contract Number:  
EE0007766
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP (Print)
Additional Journal Information:
Journal Name: Physical Chemistry Chemical Physics. PCCP (Print); Journal Volume: 19; Journal Issue: 45; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Camacho-Forero, Luis E., and Balbuena, Perla B. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. United States: N. p., 2017. Web. doi:10.1039/c7cp06485c.
Camacho-Forero, Luis E., & Balbuena, Perla B. Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode. United States. doi:10.1039/c7cp06485c.
Camacho-Forero, Luis E., and Balbuena, Perla B. Tue . "Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode". United States. doi:10.1039/c7cp06485c. https://www.osti.gov/servlets/purl/1430638.
@article{osti_1430638,
title = {Elucidating electrolyte decomposition under electron-rich environments at the lithium-metal anode},
author = {Camacho-Forero, Luis E. and Balbuena, Perla B.},
abstractNote = {The lithium metal anode is one of the key components of the lithium–sulfur (Li–S) batteries, which are considered one of the most promising candidates for the next generation of battery systems. However, one of the main challenges that have prevented Li-metal anodes from becoming feasible to be used in commercial batteries is the continuous decomposition of the electrolyte due to its high reactivity, which leads to the formation of solid–electrolyte interphase (SEI) layers. The properties of the SEI can dramatically affect the performance of the batteries. Thus, a rigorous understanding of the electrolyte decomposition is crucial to elucidate improvements in performance of the Li–S technology. Here, in this work, using density functional theory (DFT) and ab initio molecular dynamics simulations (AIMD), we investigate the effect of electron-rich environments on the decomposition mechanism of electrolyte species in pure 1,2-dimethoxyethane (DME) solvent and 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and lithium bis(fluorosulfonyl)imide (LiFSI) salt solutions. It is found that systems with pure DME require an average environment of at least ~0.9 |e| per molecule for a DME to decompose into CH3O- and C2H42-via a 4-electron transfer. In the case of mixtures, the salts are very prone to react with any excess of electrons. In addition, DME dehydrogenation due to reactions with fragments coming from the salt decompositions was detected. Formation of oligomer anionic species from DME and salt fragments were also identified from the AIMD simulations. Finally, the thermodynamics and kinetics of the most relevant electrolyte decomposition reactions were characterized. DME decomposition reactions predicted from the AIMD simulations were found to be thermodynamically favorable under exposure to Li atoms and/or by reactions with salt fragments. Lastly, in most cases, these reactions were shown to have low to moderate activation barriers.},
doi = {10.1039/c7cp06485c},
journal = {Physical Chemistry Chemical Physics. PCCP (Print)},
number = 45,
volume = 19,
place = {United States},
year = {2017},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Review on High-Loading and High-Energy Lithium-Sulfur Batteries
journal, May 2017

  • Peng, Hong-Jie; Huang, Jia-Qi; Cheng, Xin-Bing
  • Advanced Energy Materials, Vol. 7, Issue 24
  • DOI: 10.1002/aenm.201700260

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Recent Developments of the Lithium Metal Anode for Rechargeable Non-Aqueous Batteries
journal, July 2016

  • Zhang, Kai; Lee, Gi-Hyeok; Park, Mihui
  • Advanced Energy Materials, Vol. 6, Issue 20
  • DOI: 10.1002/aenm.201600811

Projector augmented-wave method
journal, December 1994


Advances in understanding mechanisms underpinning lithium–air batteries
journal, September 2016


Toward First Principles Prediction of Voltage Dependences of Electrolyte/Electrolyte Interfacial Processes in Lithium Ion Batteries
journal, November 2013

  • Leung, Kevin; Tenney, Craig M.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 46
  • DOI: 10.1021/jp408974k

Toward in-situ protected sulfur cathodes by using lithium bromide and pre-charge
journal, October 2017


Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions
journal, May 2009

  • Marenich, Aleksandr V.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 113, Issue 18, p. 6378-6396
  • DOI: 10.1021/jp810292n

From ultrasoft pseudopotentials to the projector augmented-wave method
journal, January 1999


Atomic-Scale Structure-Property Relationships in Lithium Ion Battery Electrode Materials
journal, July 2017


Modeling the electrified solid–liquid interface
journal, November 2008


Predicting the voltage dependence of interfacial electrochemical processes at lithium-intercalated graphite edge planes
journal, January 2015

  • Leung, Kevin
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 3
  • DOI: 10.1039/C4CP04494K

Stable silicon-ionic liquid interface for next-generation lithium-ion batteries
journal, February 2015

  • Piper, Daniela Molina; Evans, Tyler; Leung, Kevin
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7230

Effects of High and Low Salt Concentration in Electrolytes at Lithium–Metal Anode Surfaces
journal, December 2016

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Balbuena, Perla B.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpcc.6b10774

A fast and robust algorithm for Bader decomposition of charge density
journal, June 2006


How Voltage Drops Are Manifested by Lithium Ion Configurations at Interfaces and in Thin Films on Battery Electrodes
journal, May 2015


Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Ab initiomolecular dynamics for liquid metals
journal, January 1993


Anion Conformation of Low-Viscosity Room-Temperature Ionic Liquid 1-Ethyl-3-methylimidazolium Bis(fluorosulfonyl) Imide
journal, November 2007

  • Fujii, Kenta; Seki, Shiro; Fukuda, Shuhei
  • The Journal of Physical Chemistry B, Vol. 111, Issue 44
  • DOI: 10.1021/jp074325e

Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:  Reduction Mechanisms of Ethylene Carbonate
journal, November 2001

  • Wang, Yixuan; Nakamura, Shinichiro; Ue, Makoto
  • Journal of the American Chemical Society, Vol. 123, Issue 47
  • DOI: 10.1021/ja0164529

Quantum Mechanical Continuum Solvation Models
journal, August 2005

  • Tomasi, Jacopo; Mennucci, Benedetta; Cammi, Roberto
  • Chemical Reviews, Vol. 105, Issue 8
  • DOI: 10.1021/cr9904009

Ab initio molecular dynamics simulations of the initial stages of solid–electrolyte interphase formation on lithium ion battery graphitic anodes
journal, January 2010

  • Leung, Kevin; Budzien, Joanne L.
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 25
  • DOI: 10.1039/b925853a

Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

Reactivity at the Lithium–Metal Anode Surface of Lithium–Sulfur Batteries
journal, November 2015

  • Camacho-Forero, Luis E.; Smith, Taylor W.; Bertolini, Samuel
  • The Journal of Physical Chemistry C, Vol. 119, Issue 48
  • DOI: 10.1021/acs.jpcc.5b08254

First-Principles Molecular Dynamics at a Constant Electrode Potential
journal, December 2012


Unique Behavior of Dimethoxyethane (DME)/Mg(N(SO 2 CF 3 ) 2 ) 2 Solutions
journal, August 2016

  • Salama, Michael; Shterenberg, Ivgeni; Gizbar, Haim
  • The Journal of Physical Chemistry C, Vol. 120, Issue 35
  • DOI: 10.1021/acs.jpcc.6b07733

Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Potential Energy Landscape of Bis(fluorosulfonyl)amide
journal, August 2008

  • Canongia Lopes, José N.; Shimizu, Karina; Pádua, Agílio A. H.
  • The Journal of Physical Chemistry B, Vol. 112, Issue 31
  • DOI: 10.1021/jp803309c

Study of the Initial Stage of Solid Electrolyte Interphase Formation upon Chemical Reaction of Lithium Metal and N -Methyl- N -Propyl-Pyrrolidinium-Bis(Fluorosulfonyl)Imide
journal, September 2012

  • Budi, Akin; Basile, Andrew; Opletal, George
  • The Journal of Physical Chemistry C, Vol. 116, Issue 37
  • DOI: 10.1021/jp304581g

Towards a Stable Organic Electrolyte for the Lithium Oxygen Battery
journal, August 2014

  • Adams, Brian D.; Black, Robert; Williams, Zack
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400867

Special points for Brillouin-zone integrations
journal, June 1976

  • Monkhorst, Hendrik J.; Pack, James D.
  • Physical Review B, Vol. 13, Issue 12, p. 5188-5192
  • DOI: 10.1103/PhysRevB.13.5188

Challenges in the development of advanced Li-ion batteries: a review
journal, January 2011

  • Etacheri, Vinodkumar; Marom, Rotem; Elazari, Ran
  • Energy & Environmental Science, Vol. 4, Issue 9
  • DOI: 10.1039/c1ee01598b

Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Why Bis(fluorosulfonyl)imide Is a “Magic Anion” for Electrochemistry
journal, August 2014

  • Shkrob, Ilya A.; Marin, Timothy W.; Zhu, Ye
  • The Journal of Physical Chemistry C, Vol. 118, Issue 34
  • DOI: 10.1021/jp506567p

Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
journal, September 1992


The Surface Chemistry of Lithium Electrodes in Alkyl Carbonate Solutions
journal, January 1994

  • Aurbach, Doron
  • Journal of The Electrochemical Society, Vol. 141, Issue 1
  • DOI: 10.1149/1.2054718

X-ray Photodecomposition of Bis(trifluoromethanesulfonyl)imide, Bis(fluorosulfonyl)imide, and Hexafluorophosphate
journal, February 2017

  • Shterenberg, Ivgeni; Salama, Michael; Gofer, Yosef
  • The Journal of Physical Chemistry C, Vol. 121, Issue 7
  • DOI: 10.1021/acs.jpcc.6b11524

Importance of Reduction and Oxidation Stability of High Voltage Electrolytes and Additives
journal, August 2016


Surface-Mediated Solvent Decomposition in Li–Air Batteries: Impact of Peroxide and Superoxide Surface Terminations
journal, April 2015

  • Kumar, Nitin; Radin, Maxwell D.; Wood, Brandon C.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 17
  • DOI: 10.1021/acs.jpcc.5b00256

Improved grid-based algorithm for Bader charge allocation
journal, January 2007

  • Sanville, Edward; Kenny, Steven D.; Smith, Roger
  • Journal of Computational Chemistry, Vol. 28, Issue 5
  • DOI: 10.1002/jcc.20575

Hybrid DFT Functional-Based Static and Molecular Dynamics Studies of Excess Electron in Liquid Ethylene Carbonate
journal, January 2011

  • Yu, Jiamei; Balbuena, Perla B.; Budzien, Joanne
  • Journal of The Electrochemical Society, Vol. 158, Issue 4
  • DOI: 10.1149/1.3545977

Predicting Autoxidation Stability of Ether- and Amide-Based Electrolyte Solvents for Li–Air Batteries
journal, June 2012

  • Bryantsev, Vyacheslav S.; Faglioni, Francesco
  • The Journal of Physical Chemistry A, Vol. 116, Issue 26
  • DOI: 10.1021/jp301537w

In Situ Chemical Imaging of Solid-Electrolyte Interphase Layer Evolution in Li–S Batteries
journal, May 2017

  • Nandasiri, Manjula I.; Camacho-Forero, Luis E.; Schwarz, Ashleigh M.
  • Chemistry of Materials, Vol. 29, Issue 11
  • DOI: 10.1021/acs.chemmater.7b00374

Interactions of Dimethoxy Ethane with Li 2 O 2 Clusters and Likely Decomposition Mechanisms for Li–O 2 Batteries
journal, April 2013

  • Assary, Rajeev S.; Lau, Kah Chun; Amine, Khalil
  • The Journal of Physical Chemistry C, Vol. 117, Issue 16
  • DOI: 10.1021/jp400229n

Alignment of electronic energy levels at electrochemical interfaces
journal, January 2012

  • Cheng, Jun; Sprik, Michiel
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 32
  • DOI: 10.1039/c2cp41652b

Towards stable lithium-sulfur batteries: Mechanistic insights into electrolyte decomposition on lithium metal anode
journal, July 2017


Structures and bonding of lithium ethylene complexes
journal, February 1989


High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362

Oxidative-Stability Enhancement and Charge Transport Mechanism in Glyme–Lithium Salt Equimolar Complexes
journal, August 2011

  • Yoshida, Kazuki; Nakamura, Megumi; Kazue, Yuichi
  • Journal of the American Chemical Society, Vol. 133, Issue 33, p. 13121-13129
  • DOI: 10.1021/ja203983r