DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The lightest organic radical cation for charge storage in redox flow batteries

Abstract

In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.

Authors:
 [1];  [1];  [2];  [2];  [1];  [3];  [3];  [1];  [1];  [1];  [2];  [1];  [1];  [1];  [1];  [4];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Argonne National Lab. (ANL), Argonne, IL (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  3. Argonne National Lab. (ANL), Argonne, IL (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Argonne National Lab. (ANL), Argonne, IL (United States); Univ. of Illinois at Urbana-Champaign, Urbana, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Joint Center for Energy Storage Research (JCESR); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences, and Biosciences Division
OSTI Identifier:
1340007
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 25 ENERGY STORAGE; redox active molecules; radical cation; flow battery; dimethoxybenzene; electrochemistry

Citation Formats

Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile R., Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., and Zhang, Lu. The lightest organic radical cation for charge storage in redox flow batteries. United States: N. p., 2016. Web. doi:10.1038/srep32102.
Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile R., Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., & Zhang, Lu. The lightest organic radical cation for charge storage in redox flow batteries. United States. https://doi.org/10.1038/srep32102
Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile R., Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., and Zhang, Lu. Thu . "The lightest organic radical cation for charge storage in redox flow batteries". United States. https://doi.org/10.1038/srep32102. https://www.osti.gov/servlets/purl/1340007.
@article{osti_1340007,
title = {The lightest organic radical cation for charge storage in redox flow batteries},
author = {Huang, Jinhua and Pan, Baofei and Duan, Wentao and Wei, Xiaoliang and Assary, Rajeev S. and Su, Liang and Brushett, Fikile R. and Cheng, Lei and Liao, Chen and Ferrandon, Magali S. and Wang, Wei and Zhang, Zhengcheng and Burrell, Anthony K. and Curtiss, Larry A. and Shkrob, Ilya A. and Moore, Jeffrey S. and Zhang, Lu},
abstractNote = {In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this molecule as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.},
doi = {10.1038/srep32102},
journal = {Scientific Reports},
number = ,
volume = 6,
place = {United States},
year = {Thu Aug 25 00:00:00 EDT 2016},
month = {Thu Aug 25 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 46 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Alkaline quinone flow battery
journal, September 2015


An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
journal, December 2015

  • Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin
  • Advanced Energy Materials, Vol. 6, Issue 3, 1501449
  • DOI: 10.1002/aenm.201501449

Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries
journal, November 2014

  • Huang, Jinhua; Cheng, Lei; Assary, Rajeev S.
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401782

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
journal, October 2015

  • Sevov, Christo S.; Brooner, Rachel E. M.; Chénard, Etienne
  • Journal of the American Chemical Society, Vol. 137, Issue 45
  • DOI: 10.1021/jacs.5b09572

TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
journal, October 2014

  • Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403746

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species
journal, August 2014

  • Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400678

Anisole radical cation reactions in aqueous solution
journal, July 1976

  • Holcman, Jerzy; Sehested, Knud
  • The Journal of Physical Chemistry, Vol. 80, Issue 14
  • DOI: 10.1021/j100555a027

Studies of Aromatic Redox Shuttle Additives for LiFePO4-Based Li-Ion Cells
journal, January 2005

  • Buhrmester, Claudia; Chen, Jun; Moshurchak, Lee
  • Journal of The Electrochemical Society, Vol. 152, Issue 12, p. A2390-A2399
  • DOI: 10.1149/1.2098265

Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection
journal, January 2012

  • Zhang, Lu; Zhang, Zhengcheng; Redfern, Paul C.
  • Energy & Environmental Science, Vol. 5, Issue 8
  • DOI: 10.1039/c2ee21977h

Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries
journal, January 2005

  • Chen, Jun; Buhrmester, Claudia; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 1
  • DOI: 10.1149/1.1836119

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
journal, January 2015

  • Huang, Jinhua; Su, Liang; Kowalski, Jeffrey A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 29
  • DOI: 10.1039/C5TA02380G

Understanding the Stability of Aromatic Redox Shuttles for Overcharge Protection of Lithium-Ion Cells
journal, January 2006

  • Chen, Zonghai; Wang, Qingzheng; Amine, K.
  • Journal of The Electrochemical Society, Vol. 153, Issue 12
  • DOI: 10.1149/1.2352048

Electrochemical oxidation of organic compounds
journal, August 1968


A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte
journal, February 2012


2,5-Difluoro-1,4-dimethoxybenzene for overcharge protection of secondary lithium batteries
journal, December 2007


TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
journal, October 2014

  • Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403746

Optimization studies on a Fe/Cr redox flow battery
journal, January 1992


Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
journal, October 2015

  • Sevov, Christo S.; Brooner, Rachel E. M.; Chénard, Etienne
  • Journal of the American Chemical Society, Vol. 137, Issue 45
  • DOI: 10.1021/jacs.5b09572

An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials
journal, June 2016

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 534, Issue 7607
  • DOI: 10.1038/nature18909

Anthraquinone with tailored structure for a nonaqueous metal–organic redox flow battery
journal, January 2012

  • Wang, Wei; Xu, Wu; Cosimbescu, Lelia
  • Chemical Communications, Vol. 48, Issue 53, p. 6669-6671
  • DOI: 10.1039/c2cc32466k

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Works referencing / citing this record:

MetILs 3 : A Strategy for High Density Energy Storage Using Redox-Active Ionic Liquids
journal, July 2017

  • Small, Leo J.; Pratt, Harry D.; Staiger, Chad L.
  • Advanced Sustainable Systems, Vol. 1, Issue 9
  • DOI: 10.1002/adsu.201700066

Annulated Dialkoxybenzenes as Catholyte Materials for Non-aqueous Redox Flow Batteries: Achieving High Chemical Stability through Bicyclic Substitution
journal, July 2017

  • Zhang, Jingjing; Yang, Zheng; Shkrob, Ilya A.
  • Advanced Energy Materials, Vol. 7, Issue 21
  • DOI: 10.1002/aenm.201701272

Single‐Step Spray Printing of Symmetric All‐Organic Solid‐State Batteries Based on Porous Textile Dye Electrodes
journal, August 2019

  • Leung, Puiki; Bu, Junfu; Quijano Velasco, Pablo
  • Advanced Energy Materials, Vol. 9, Issue 39
  • DOI: 10.1002/aenm.201901418

Molecular engineering of organic electroactive materials for redox flow batteries
journal, January 2018

  • Ding, Yu; Zhang, Changkun; Zhang, Leyuan
  • Chemical Society Reviews, Vol. 47, Issue 1
  • DOI: 10.1039/c7cs00569e

Critical Review—Experimental Diagnostics and Material Characterization Techniques Used on Redox Flow Batteries
journal, January 2018

  • Gandomi, Y. Ashraf; Aaron, D. S.; Houser, J. R.
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0601805jes

Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
journal, January 2019

  • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0681912jes