skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The lightest organic radical cation for charge storage in redox flow batteries

Abstract

Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.

Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1322502
Report Number(s):
PNNL-SA-114980
Journal ID: ISSN 2045-2322; KC0208010
DOE Contract Number:  
AC05-76RL01830
Resource Type:
Journal Article
Journal Name:
Scientific Reports
Additional Journal Information:
Journal Volume: 6; Journal ID: ISSN 2045-2322
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English

Citation Formats

Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile, Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., and Zhang, Lu. The lightest organic radical cation for charge storage in redox flow batteries. United States: N. p., 2016. Web. doi:10.1038/srep32102.
Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile, Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., & Zhang, Lu. The lightest organic radical cation for charge storage in redox flow batteries. United States. doi:10.1038/srep32102.
Huang, Jinhua, Pan, Baofei, Duan, Wentao, Wei, Xiaoliang, Assary, Rajeev S., Su, Liang, Brushett, Fikile, Cheng, Lei, Liao, Chen, Ferrandon, Magali S., Wang, Wei, Zhang, Zhengcheng, Burrell, Anthony K., Curtiss, Larry A., Shkrob, Ilya A., Moore, Jeffrey S., and Zhang, Lu. Thu . "The lightest organic radical cation for charge storage in redox flow batteries". United States. doi:10.1038/srep32102.
@article{osti_1322502,
title = {The lightest organic radical cation for charge storage in redox flow batteries},
author = {Huang, Jinhua and Pan, Baofei and Duan, Wentao and Wei, Xiaoliang and Assary, Rajeev S. and Su, Liang and Brushett, Fikile and Cheng, Lei and Liao, Chen and Ferrandon, Magali S. and Wang, Wei and Zhang, Zhengcheng and Burrell, Anthony K. and Curtiss, Larry A. and Shkrob, Ilya A. and Moore, Jeffrey S. and Zhang, Lu},
abstractNote = {Electrochemically reversible fluids of high energy density are promising materials for capturing the electrical energy generated from intermittent sources like solar and wind. To meet this technological challenge there is a need to understand the fundamental limits and interplay of electrochemical potential, stability and solubility in “lean” derivatives of redox-active molecules. Here we describe the process of molecular pruning, illustrated for 2,5-di-tert-butyl-1,4-bis(2-methoxyethoxy)benzene, a molecule known to produce a persistently stable, high-potential radical cation. By systematically shedding molecular fragments considered important for radical cation steric stabilization, we discovered a minimalistic structure that retains long-term stability in its oxidized form. Interestingly, we find the tert-butyl groups are unnecessary; high stability of the radical cation and high solubility are both realized in derivatives having appropriately positioned arene methyl groups. These stability trends are rationalized by mechanistic considerations of the postulated decomposition pathways. We suggest that the molecular pruning approach will uncover lean redox active derivatives for electrochemical energy storage leading to materials with long-term stability and high intrinsic capacity.},
doi = {10.1038/srep32102},
journal = {Scientific Reports},
issn = {2045-2322},
number = ,
volume = 6,
place = {United States},
year = {2016},
month = {8}
}

Works referenced in this record:

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Alkaline quinone flow battery
journal, September 2015


An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

A Total Organic Aqueous Redox Flow Battery Employing a Low Cost and Sustainable Methyl Viologen Anolyte and 4-HO-TEMPO Catholyte
journal, December 2015

  • Liu, Tianbiao; Wei, Xiaoliang; Nie, Zimin
  • Advanced Energy Materials, Vol. 6, Issue 3, 1501449
  • DOI: 10.1002/aenm.201501449

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries
journal, November 2014

  • Huang, Jinhua; Cheng, Lei; Assary, Rajeev S.
  • Advanced Energy Materials, Vol. 5, Issue 6
  • DOI: 10.1002/aenm.201401782

Radical Compatibility with Nonaqueous Electrolytes and Its Impact on an All-Organic Redox Flow Battery
journal, April 2015

  • Wei, Xiaoliang; Xu, Wu; Huang, Jinhua
  • Angewandte Chemie International Edition, Vol. 54, Issue 30
  • DOI: 10.1002/anie.201501443

Evolutionary Design of Low Molecular Weight Organic Anolyte Materials for Applications in Nonaqueous Redox Flow Batteries
journal, October 2015

  • Sevov, Christo S.; Brooner, Rachel E. M.; Chénard, Etienne
  • Journal of the American Chemical Society, Vol. 137, Issue 45
  • DOI: 10.1021/jacs.5b09572

TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
journal, October 2014

  • Wei, Xiaoliang; Xu, Wu; Vijayakumar, Murugesan
  • Advanced Materials, Vol. 26, Issue 45
  • DOI: 10.1002/adma.201403746

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

Towards High-Performance Nonaqueous Redox Flow Electrolyte Via Ionic Modification of Active Species
journal, August 2014

  • Wei, Xiaoliang; Cosimbescu, Lelia; Xu, Wu
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400678

Anisole radical cation reactions in aqueous solution
journal, July 1976

  • Holcman, Jerzy; Sehested, Knud
  • The Journal of Physical Chemistry, Vol. 80, Issue 14
  • DOI: 10.1021/j100555a027

Studies of Aromatic Redox Shuttle Additives for LiFePO4-Based Li-Ion Cells
journal, January 2005

  • Buhrmester, Claudia; Chen, Jun; Moshurchak, Lee
  • Journal of The Electrochemical Society, Vol. 152, Issue 12, p. A2390-A2399
  • DOI: 10.1149/1.2098265

Chemical Overcharge and Overdischarge Protection for Lithium-Ion Batteries
journal, January 2005

  • Chen, Jun; Buhrmester, Claudia; Dahn, J. R.
  • Electrochemical and Solid-State Letters, Vol. 8, Issue 1
  • DOI: 10.1149/1.1836119

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

A subtractive approach to molecular engineering of dimethoxybenzene-based redox materials for non-aqueous flow batteries
journal, January 2015

  • Huang, Jinhua; Su, Liang; Kowalski, Jeffrey A.
  • Journal of Materials Chemistry A, Vol. 3, Issue 29
  • DOI: 10.1039/C5TA02380G

Understanding the Stability of Aromatic Redox Shuttles for Overcharge Protection of Lithium-Ion Cells
journal, January 2006

  • Chen, Zonghai; Wang, Qingzheng; Amine, K.
  • Journal of The Electrochemical Society, Vol. 153, Issue 12
  • DOI: 10.1149/1.2352048

Electrochemical oxidation of organic compounds
journal, August 1968


Optimization studies on a Fe/Cr redox flow battery
journal, January 1992


A New Fe/V Redox Flow Battery Using a Sulfuric/Chloric Mixed-Acid Supporting Electrolyte
journal, February 2012


2,5-Difluoro-1,4-dimethoxybenzene for overcharge protection of secondary lithium batteries
journal, December 2007


    Works referencing / citing this record:

    Crossover in Membranes for Aqueous Soluble Organic Redox Flow Batteries
    journal, January 2019

    • Small, Leo J.; Pratt, Harry D.; Anderson, Travis M.
    • Journal of The Electrochemical Society, Vol. 166, Issue 12
    • DOI: 10.1149/2.0681912jes