skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries

Abstract

In this study, a series of dimethoxybenzene-based catholyte molecules, which are electrochemically reversible at high potential (4.0 V vs Li/Li +) and in the form of liquid, is developed. The liquid nature offers the molecules the possibility of being a solo or co-solvent for nonaqueous redox flow batteries. This could dramatically improve the energy density.

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [2];  [1]
  1. Argonne National Lab. (ANL), Argonne, IL (United States). Chemical Sciences and Engineering Division
  2. Argonne National Lab. (ANL), Argonne, IL (United States). Material Sciences Division
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1339128
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 5; Journal Issue: 6; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
30 DIRECT ENERGY CONVERSION; 36 MATERIALS SCIENCE

Citation Formats

Huang, Jinhua, Cheng, Lei, Assary, Rajeev S., Wang, Peiqi, Xue, Zheng, Burrell, Anthony K., Curtiss, Larry A., and Zhang, Lu. Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries. United States: N. p., 2014. Web. doi:10.1002/aenm.201401782.
Huang, Jinhua, Cheng, Lei, Assary, Rajeev S., Wang, Peiqi, Xue, Zheng, Burrell, Anthony K., Curtiss, Larry A., & Zhang, Lu. Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries. United States. doi:10.1002/aenm.201401782.
Huang, Jinhua, Cheng, Lei, Assary, Rajeev S., Wang, Peiqi, Xue, Zheng, Burrell, Anthony K., Curtiss, Larry A., and Zhang, Lu. Tue . "Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries". United States. doi:10.1002/aenm.201401782. https://www.osti.gov/servlets/purl/1339128.
@article{osti_1339128,
title = {Liquid Catholyte Molecules for Nonaqueous Redox Flow Batteries},
author = {Huang, Jinhua and Cheng, Lei and Assary, Rajeev S. and Wang, Peiqi and Xue, Zheng and Burrell, Anthony K. and Curtiss, Larry A. and Zhang, Lu},
abstractNote = {In this study, a series of dimethoxybenzene-based catholyte molecules, which are electrochemically reversible at high potential (4.0 V vs Li/Li+) and in the form of liquid, is developed. The liquid nature offers the molecules the possibility of being a solo or co-solvent for nonaqueous redox flow batteries. This could dramatically improve the energy density.},
doi = {10.1002/aenm.201401782},
journal = {Advanced Energy Materials},
number = 6,
volume = 5,
place = {United States},
year = {2014},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 41 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Redox flow cells for energy conversion
journal, September 2006

  • Ponce de Leon, C.; Frias-Ferrer, A.; Gonzalez-Garcia, J.
  • Journal of Power Sources, Vol. 160, Issue 1, p. 716-732
  • DOI: 10.1016/j.jpowsour.2006.02.095

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Investigation of the V(V)/V(IV) system for use in the positive half-cell of a redox battery
journal, October 1985


Understanding the redox shuttle stability of 3,5-di-tert-butyl-1,2-dimethoxybenzene for overcharge protection of lithium-ion batteries
journal, August 2010


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Evaluation of electrolytes for redox flow battery applications
journal, January 2007


A study of the V(II)/V(III) redox couple for redox flow cell applications
journal, June 1985


A review of current developments in non-aqueous redox flow batteries: characterization of their membranes for design perspective
journal, January 2013

  • Shin, Sung-Hee; Yun, Sung-Hyun; Moon, Seung-Hyeon
  • RSC Advances, Vol. 3, Issue 24, p. 9095-9116
  • DOI: 10.1039/c3ra00115f

Redox flow batteries a review
journal, September 2011

  • Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.
  • Journal of Applied Electrochemistry, Vol. 41, Issue 10, p. 1137-1164
  • DOI: 10.1007/s10800-011-0348-2

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


An All-Organic Non-aqueous Lithium-Ion Redox Flow Battery
journal, June 2012

  • Brushett, Fikile R.; Vaughey, John T.; Jansen, Andrew N.
  • Advanced Energy Materials, Vol. 2, Issue 11, p. 1390-1396
  • DOI: 10.1002/aenm.201200322

Li-Redox Flow Batteries Based on Hybrid Electrolytes: At the Cross Road between Li-ion and Redox Flow Batteries
journal, June 2012

  • Wang, Yarong; He, Ping; Zhou, Haoshen
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 770-779
  • DOI: 10.1002/aenm.201200100