DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch

Abstract

Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstrate that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.

Authors:
 [1];  [2];  [3];  [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Naval Research Lab. (NRL), Washington, DC (United States). Plasma Physics Division
  3. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Univ. of Michigan, Ann Arbor, MI (United States). Nuclear Engineering and Radiological Sciences
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1332916
Alternate Identifier(s):
OSTI ID: 1331831
Report Number(s):
SAND2016-10869J
Journal ID: ISSN 0031-9007; PRLTAO; 648656; TRN: US1700122
Grant/Contract Number:  
AC04-94AL85000; 165746
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 20; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS

Citation Formats

Schmit, P. F., Velikovich, A. L., McBride, R. D., and Robertson, G. K. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch. United States: N. p., 2016. Web. doi:10.1103/PhysRevLett.117.205001.
Schmit, P. F., Velikovich, A. L., McBride, R. D., & Robertson, G. K. Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch. United States. https://doi.org/10.1103/PhysRevLett.117.205001
Schmit, P. F., Velikovich, A. L., McBride, R. D., and Robertson, G. K. Fri . "Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch". United States. https://doi.org/10.1103/PhysRevLett.117.205001. https://www.osti.gov/servlets/purl/1332916.
@article{osti_1332916,
title = {Controlling Rayleigh-Taylor Instabilities in Magnetically Driven Solid Metal Shells by Means of a Dynamic Screw Pinch},
author = {Schmit, P. F. and Velikovich, A. L. and McBride, R. D. and Robertson, G. K.},
abstractNote = {Magnetically driven implosions of solid metal shells are an effective vehicle to compress materials to extreme pressures and densities. Rayleigh-Taylor instabilities (RTI) are ubiquitous, yet typically undesired features in all such experiments where solid materials are rapidly accelerated to high velocities. In cylindrical shells (“liners”), the magnetic field driving the implosion can exacerbate the RTI. Here, we suggest an approach to implode solid metal liners enabling a remarkable reduction in the growth of magnetized RTI (MRTI) by employing a magnetic drive with a tilted, dynamic polarization, forming a dynamic screw pinch. Our calculations, based on a self-consistent analytic framework, demonstrate that the cumulative growth of the most deleterious MRTI modes may be reduced by as much as 1 to 2 orders of magnitude. One key application of this technique is to generate increasingly stable, higher-performance implosions of solid metal liners to achieve fusion [M. R. Gomez et al., Phys. Rev. Lett. 113, 155003 (2014)]. Finally, we weigh the potentially dramatic benefits of the solid liner dynamic screw pinch against the experimental tradeoffs required to achieve the desired drive field history and identify promising designs for future experimental and computational studies.},
doi = {10.1103/PhysRevLett.117.205001},
journal = {Physical Review Letters},
number = 20,
volume = 117,
place = {United States},
year = {Fri Nov 11 00:00:00 EST 2016},
month = {Fri Nov 11 00:00:00 EST 2016}
}

Journal Article:

Citation Metrics:
Cited by: 17 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Suppression of Rayleigh–Taylor and bulk convective instabilities in imploding plasma liners and pinches
journal, June 1990

  • Bud’ko, A. B.; Liberman, M. A.; Velikovich, A. L.
  • Physics of Fluids B: Plasma Physics, Vol. 2, Issue 6
  • DOI: 10.1063/1.859252

Suppression of Laser Nonuniformity Imprinting Using a Thin High- Z Coating
journal, February 2015


Bell-Plesset effects in Rayleigh-Taylor instability of finite-thickness spherical and cylindrical shells
journal, December 2015

  • Velikovich, A. L.; Schmit, P. F.
  • Physics of Plasmas, Vol. 22, Issue 12
  • DOI: 10.1063/1.4938272

Strongly Inhibited Rayleigh-Taylor Growth with 0.25-μm Lasers
journal, August 1986


A review of the ablative stabilization of the Rayleigh–Taylor instability in regimes relevant to inertial confinement fusion
journal, May 1994

  • Kilkenny, J. D.; Glendinning, S. G.; Haan, S. W.
  • Physics of Plasmas, Vol. 1, Issue 5
  • DOI: 10.1063/1.870688

First Measurements of Fuel-Ablator Interface Instability Growth in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, August 2016


Stabilization of high-compression, indirect-drive inertial confinement fusion implosions using a 4-shock adiabat-shaped drive
journal, August 2015

  • MacPhee, A. G.; Peterson, J. L.; Casey, D. T.
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928909

Dynamics and stability of twisted-wire arrays
journal, July 2001


Steady-state modeling of current loss in a post-hole convolute driven by high power magnetically insulated transmission lines
journal, December 2013

  • Madrid, E. A.; Rose, D. V.; Welch, D. R.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 16, Issue 12, Article No. 120401
  • DOI: 10.1103/PhysRevSTAB.16.120401

Measurements of magneto-Rayleigh–Taylor instability growth during the implosion of initially solid metal liners
journal, May 2011

  • Sinars, D. B.; Slutz, S. A.; Herrmann, M. C.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3560911

Role of magnetic fluctuations in mode selection of magnetically driven instabilities
journal, December 2014

  • Dan, Jia-Kun; Ren, Xiao-Dong; Huang, Xian-Bin
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4905072

Evolution of helical perturbations in a thin-shell model of an imploding liner
journal, November 2014

  • Ryutov, D. D.; Dorf, M. A.
  • Physics of Plasmas, Vol. 21, Issue 11
  • DOI: 10.1063/1.4901197

Self-consistent Analytical Model of the Rayleigh-Taylor Instability in Inertial Confinement Fusion
journal, November 1994


On generation of intense magnetic field in screw-wire array Z-pinch
journal, September 2016

  • Orlov, A. P.; Repin, B. G.
  • Physics of Plasmas, Vol. 23, Issue 9
  • DOI: 10.1063/1.4962693

Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


Mitigation of the Rayleigh–Taylor instability by sheared axial flows
journal, June 1998

  • Shumlak, U.; Roderick, N. F.
  • Physics of Plasmas, Vol. 5, Issue 6
  • DOI: 10.1063/1.872913

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Design of magnetized liner inertial fusion experiments using the Z facility
journal, July 2014

  • Sefkow, A. B.; Slutz, S. A.; Koning, J. M.
  • Physics of Plasmas, Vol. 21, Issue 7
  • DOI: 10.1063/1.4890298

Layzer type models for pressure driven shells
journal, May 2005


Rayleigh-Taylor Growth Measurements in the Acceleration Phase of Spherical Implosions on OMEGA
journal, September 2009


Anisotropy and feedthrough in magneto-Rayleigh-Taylor instability
journal, June 2011


Circuit Model for Driving Three-Dimensional Resistive MHD Wire Array $Z$-Pinch Calculations
journal, April 2010

  • Jennings, Chris A.; Chittenden, Jeremy P.; Cuneo, Michael E.
  • IEEE Transactions on Plasma Science, Vol. 38, Issue 4
  • DOI: 10.1109/TPS.2010.2042971

A semi-analytic model of magnetized liner inertial fusion
journal, May 2015

  • McBride, Ryan D.; Slutz, Stephen A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4918953

Probing off-Hugoniot states in Ta, Cu, and Al to 1000 GPa compression with magnetically driven liner implosions
journal, January 2016

  • Lemke, R. W.; Dolan, D. H.; Dalton, D. G.
  • Journal of Applied Physics, Vol. 119, Issue 1
  • DOI: 10.1063/1.4939675

Suppression of Rayleigh-Taylor Instability in Z -Pinch Loads with Tailored Density Profiles
journal, July 1996


Exploring magnetized liner inertial fusion with a semi-analytic model
journal, January 2016

  • McBride, R. D.; Slutz, S. A.; Vesey, R. A.
  • Physics of Plasmas, Vol. 23, Issue 1
  • DOI: 10.1063/1.4939479

Electrothermal instability growth in magnetically driven pulsed power liners
journal, September 2012

  • Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751868

Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner
journal, March 2015

  • Weis, M. R.; Zhang, P.; Lau, Y. Y.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4915520

Gas-puff liner implosion in the configuration with helical current return rods
journal, February 2013


Plasma evolution and dynamics in high-power vacuum-transmission-line post-hole convolutes
journal, June 2008

  • Rose, D. V.; Welch, D. R.; Hughes, T. P.
  • Physical Review Special Topics - Accelerators and Beams, Vol. 11, Issue 6
  • DOI: 10.1103/PhysRevSTAB.11.060401

Two‐dimensional radiation‐magnetohydrodynamic simulations of SATURN imploding Z pinches
journal, May 1996

  • Hammer, James H.; Eddleman, James L.; Springer, Paul T.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872003

Stability analysis of dynamic Z pinches and theta pinches
journal, March 1989

  • Bud’ko, A. B.; Felber, F. S.; Kleev, A. I.
  • Physics of Fluids B: Plasma Physics, Vol. 1, Issue 3
  • DOI: 10.1063/1.859207

Nonlinear Rayleigh-Taylor Evolution of a Three-Dimensional Multimode Perturbation
journal, May 1998


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners
journal, February 2016


Radiation hydrodynamics modeling of the highest compression inertial confinement fusion ignition experiment from the National Ignition Campaign
journal, February 2015

  • Clark, D. S.; Marinak, M. M.; Weber, C. R.
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4906897

Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100

Rayleigh-Taylor Instabilities of a Collapsing Cylindrical Shell in a Magnetic Field
journal, January 1962


Performance and Mix Measurements of Indirect Drive Cu-Doped Be Implosions
journal, May 2015


Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

On the Stability of Fluid Flows with Spherical Symmetry
journal, January 1954


Measurements of the Axial Magnetic Field during the Implosion of Wire Arrays in the Angara-5-1 Facility
journal, January 2005

  • Zukakishvili, G. G.
  • Plasma Physics Reports, Vol. 31, Issue 8
  • DOI: 10.1134/1.2031626

Electrothermal Instability Mitigation by Using Thick Dielectric Coatings on Magnetically Imploded Conductors
journal, April 2014


Helical plasma striations in liners in the presence of an external axial magnetic field
journal, February 2016

  • Atoyan, L.; Hammer, D. A.; Kusse, B. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4942787

Effects of thin high-Z layers on the hydrodynamics of laser-accelerated plastic targets
journal, May 2002

  • Obenschain, S. P.; Colombant, D. G.; Karasik, M.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1464541

Observations of Modified Three-Dimensional Instability Structure for Imploding z -Pinch Liners that are Premagnetized with an Axial Field
journal, December 2013


Equilibrium, flow shear and stability measurements in the Z-pinch
journal, July 2009


The effect of an initial load twist on Rayleigh-Taylor instability growth and X-ray radiation of wire-array Z-pinches
journal, January 2000

  • Golub, T. A.; Volkov, N. B.; Spielman, R. B.
  • IEEE Transactions on Plasma Science, Vol. 28, Issue 5
  • DOI: 10.1109/27.901208

Penetrating Radiography of Imploding and Stagnating Beryllium Liners on the Z Accelerator
journal, September 2012


Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

Suppression of Rayleigh–Taylor instability by the snowplow mechanism
journal, April 1993

  • Gol’berg, S. M.; Velikovich, A. L.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 4
  • DOI: 10.1063/1.860974

Stability analysis of unsteady ablation fronts
journal, November 1993


Beryllium liner implosion experiments on the Z accelerator in preparation for magnetized liner inertial fusion
journal, May 2013

  • McBride, R. D.; Martin, M. R.; Lemke, R. W.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803079

The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
journal, March 1950

  • Taylor, Geoffrey Ingram
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 201, Issue 1065, p. 192-196
  • DOI: 10.1098/rspa.1950.0052

Magnetically Driven Implosions for Inertial Confinement Fusion at Sandia National Laboratories
journal, December 2012

  • Cuneo, M. E.; Herrmann, M. C.; Sinars, D. B.
  • IEEE Transactions on Plasma Science, Vol. 40, Issue 12
  • DOI: 10.1109/TPS.2012.2223488

Direct-drive laser fusion: Status and prospects
journal, May 1998

  • Bodner, Stephen E.; Colombant, Denis G.; Gardner, John H.
  • Physics of Plasmas, Vol. 5, Issue 5, p. 1901-1918
  • DOI: 10.1063/1.872861

Suppression of the Rayleigh-Taylor Instability due to Self-Radiation in a Multiablation Target
journal, May 2004


Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Investigation of the Character of the Equilibrium of an Incompressible Heavy Fluid of Variable Density
journal, November 1882


Multiwire screw-pinch loads for generation of terawatt x-ray radiation
journal, June 1999

  • Golub, T. A.; Volkov, N. B.; Spielman, R. B.
  • Applied Physics Letters, Vol. 74, Issue 24
  • DOI: 10.1063/1.123202

Strongly Inhibited Rayleigh-Taylor Growth with 0.25-μm Lasers
journal, February 1989


A semi-analytic model of magnetized liner inertial fusion
text, January 2015


Exploring magnetized liner inertial fusion with a semi-analytic model
text, January 2015


Works referencing / citing this record:

Axial magnetic field injection in magnetized liner inertial fusion
journal, October 2017

  • Gourdain, P. -A.; Adams, M. B.; Davies, J. R.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4986640

Observations of the magneto-Rayleigh-Taylor instability and shock dynamics in gas-puff Z-pinch experiments
journal, July 2018

  • de Grouchy, P. W. L.; Kusse, B. R.; Banasek, J.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5032084

Anisotropy-driven collisional separation of impurities in magnetized compressing and expanding cylindrical plasmas
journal, December 2018

  • Ochs, I. E.; Fisch, N. J.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5055568

Design of dynamic screw pinch experiments for magnetized liner inertial fusion
journal, October 2019

  • Shipley, G. A.; Jennings, C. A.; Schmit, P. F.
  • Physics of Plasmas, Vol. 26, Issue 10
  • DOI: 10.1063/1.5120529

Magneto-Rayleigh–Taylor instability in compressible Z-pinch liner plasmas
journal, June 2017