DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Direct drive: Simulations and results from the National Ignition Facility

Abstract

For this study, direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [3];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [4];  [2];  [1];  [3];  [1];  [1];  [3];  [1];  [3] « less
  1. Univ. of Rochester, Rochester, NY (United States)
  2. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1255561
Alternate Identifier(s):
OSTI ID: 1248063; OSTI ID: 1341952
Report Number(s):
LLNL-JRNL-704522
Journal ID: ISSN 1070-664X; 2015-124; TIC-1272
Grant/Contract Number:  
NA0001944; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 23; Journal Issue: 5; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; light scattering; trajectory models; shell model; laser ablation; visible spectra; 42 ENGINEERING; 70 PLASMA PHYSICS AND FUSION

Citation Formats

Radha, P. B., Hohenberger, M., Edgell, D. H., Marozas, J. A., Marshall, F. J., Michel, D. T., Rosenberg, M. J., Seka, W., Shvydky, A., Boehly, T. R., Collins, T. J. B., Campbell, E. M., Craxton, R. S., Delettrez, J. A., Dixit, S. N., Frenje, J. A., Froula, D. H., Goncharov, V. N., Hu, S. X., Knauer, J. P., McCrory, R. L., McKenty, P. W., Meyerhofer, D. D., Moody, J., Myatt, J. F., Petrasso, R. D., Regan, S. P., Sangster, T. C., Sio, H., Skupsky, S., and Zylstra, A. Direct drive: Simulations and results from the National Ignition Facility. United States: N. p., 2016. Web. doi:10.1063/1.4946023.
Radha, P. B., Hohenberger, M., Edgell, D. H., Marozas, J. A., Marshall, F. J., Michel, D. T., Rosenberg, M. J., Seka, W., Shvydky, A., Boehly, T. R., Collins, T. J. B., Campbell, E. M., Craxton, R. S., Delettrez, J. A., Dixit, S. N., Frenje, J. A., Froula, D. H., Goncharov, V. N., Hu, S. X., Knauer, J. P., McCrory, R. L., McKenty, P. W., Meyerhofer, D. D., Moody, J., Myatt, J. F., Petrasso, R. D., Regan, S. P., Sangster, T. C., Sio, H., Skupsky, S., & Zylstra, A. Direct drive: Simulations and results from the National Ignition Facility. United States. https://doi.org/10.1063/1.4946023
Radha, P. B., Hohenberger, M., Edgell, D. H., Marozas, J. A., Marshall, F. J., Michel, D. T., Rosenberg, M. J., Seka, W., Shvydky, A., Boehly, T. R., Collins, T. J. B., Campbell, E. M., Craxton, R. S., Delettrez, J. A., Dixit, S. N., Frenje, J. A., Froula, D. H., Goncharov, V. N., Hu, S. X., Knauer, J. P., McCrory, R. L., McKenty, P. W., Meyerhofer, D. D., Moody, J., Myatt, J. F., Petrasso, R. D., Regan, S. P., Sangster, T. C., Sio, H., Skupsky, S., and Zylstra, A. Tue . "Direct drive: Simulations and results from the National Ignition Facility". United States. https://doi.org/10.1063/1.4946023. https://www.osti.gov/servlets/purl/1255561.
@article{osti_1255561,
title = {Direct drive: Simulations and results from the National Ignition Facility},
author = {Radha, P. B. and Hohenberger, M. and Edgell, D. H. and Marozas, J. A. and Marshall, F. J. and Michel, D. T. and Rosenberg, M. J. and Seka, W. and Shvydky, A. and Boehly, T. R. and Collins, T. J. B. and Campbell, E. M. and Craxton, R. S. and Delettrez, J. A. and Dixit, S. N. and Frenje, J. A. and Froula, D. H. and Goncharov, V. N. and Hu, S. X. and Knauer, J. P. and McCrory, R. L. and McKenty, P. W. and Meyerhofer, D. D. and Moody, J. and Myatt, J. F. and Petrasso, R. D. and Regan, S. P. and Sangster, T. C. and Sio, H. and Skupsky, S. and Zylstra, A.},
abstractNote = {For this study, direct-drive implosion physics is being investigated at the National Ignition Facility. The primary goal of the experiments is twofold: to validate modeling related to implosion velocity and to estimate the magnitude of hot-electron preheat. Implosion experiments indicate that the energetics is well-modeled when cross-beam energy transfer (CBET) is included in the simulation and an overall multiplier to the CBET gain factor is employed; time-resolved scattered light and scattered-light spectra display the correct trends. Trajectories from backlit images are well modeled, although those from measured self-emission images indicate increased shell thickness and reduced shell density relative to simulations. Sensitivity analyses indicate that the most likely cause for the density reduction is nonuniformity growth seeded by laser imprint and not laser-energy coupling. Hot-electron preheat is at tolerable levels in the ongoing experiments, although it is expected to increase after the mitigation of CBET. Future work will include continued model validation, imprint measurements, and mitigation of CBET and hot-electron preheat.},
doi = {10.1063/1.4946023},
journal = {Physics of Plasmas},
number = 5,
volume = 23,
place = {United States},
year = {Tue Apr 19 00:00:00 EDT 2016},
month = {Tue Apr 19 00:00:00 EDT 2016}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 31 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems
journal, January 1981


Hydrodynamic relations for direct-drive fast-ignition and conventional inertial confinement fusion implosions
journal, July 2007


Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments
journal, May 2009

  • Seka, W.; Edgell, D. H.; Myatt, J. F.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3125242

Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Designing symmetric polar direct drive implosions on the Omega laser facility
journal, April 2014

  • Krasheninnikova, Natalia S.; Cobble, James A.; Murphy, Thomas J.
  • Physics of Plasmas, Vol. 21, Issue 4
  • DOI: 10.1063/1.4870756

Self-consistent growth rate of the Rayleigh–Taylor instability in an ablatively accelerating plasma
journal, January 1985

  • Takabe, H.; Mima, K.; Montierth, L.
  • Physics of Fluids, Vol. 28, Issue 12
  • DOI: 10.1063/1.865099

On the inhomogeneous two-plasmon instability
journal, January 1983


Point design targets, specifications, and requirements for the 2010 ignition campaign on the National Ignition Facility
journal, May 2011

  • Haan, S. W.; Lindl, J. D.; Callahan, D. A.
  • Physics of Plasmas, Vol. 18, Issue 5
  • DOI: 10.1063/1.3592169

Experimental reduction of laser imprinting and Rayleigh–Taylor growth in spherically compressed, medium-Z-doped plastic targets
journal, June 2012

  • Fiksel, G.; Hu, S. X.; Goncharov, V. A.
  • Physics of Plasmas, Vol. 19, Issue 6
  • DOI: 10.1063/1.4729732

Measurements of the divergence of fast electrons in laser-irradiated spherical targets
journal, September 2013

  • Yaakobi, B.; Solodov, A. A.; Myatt, J. F.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4824008

OMEGA polar-drive target designs
journal, August 2012

  • Radha, P. B.; Marozas, J. A.; Marshall, F. J.
  • Physics of Plasmas, Vol. 19, Issue 8
  • DOI: 10.1063/1.4742320

Polar-direct-drive simulations and experiments
journal, May 2006

  • Marozas, J. A.; Marshall, F. J.; Craxton, R. S.
  • Physics of Plasmas, Vol. 13, Issue 5
  • DOI: 10.1063/1.2184949

Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)
journal, November 2014

  • Hohenberger, M.; Albert, F.; Palmer, N. E.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4890537

Triple-picket warm plastic-shell implosions on OMEGA
journal, January 2011

  • Radha, P. B.; Stoeckl, C.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 18, Issue 1
  • DOI: 10.1063/1.3544930

Polar direct drive on the National Ignition Facility
journal, May 2004

  • Skupsky, S.; Marozas, J. A.; Craxton, R. S.
  • Physics of Plasmas, Vol. 11, Issue 5, p. 2763-2770
  • DOI: 10.1063/1.1689665

Shell trajectory measurements from direct-drive implosion experiments
journal, October 2012

  • Michel, D. T.; Sorce, C.; Epstein, R.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4732179

Optimization of the NIF ignition point design hohlraum
journal, May 2008


Crossed-beam energy transfer in direct-drive implosions
journal, May 2012

  • Igumenshchev, I. V.; Seka, W.; Edgell, D. H.
  • Physics of Plasmas, Vol. 19, Issue 5, Article No. 056314
  • DOI: 10.1063/1.4718594

Polar-direct-drive experiments on the National Ignition Facilitya)
journal, May 2015

  • Hohenberger, M.; Radha, P. B.; Myatt, J. F.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4920958

Thermal electron transport in direct-drive laser fusion
journal, August 1986

  • Delettrez, J.
  • Canadian Journal of Physics, Vol. 64, Issue 8
  • DOI: 10.1139/p86-162

Early stage of implosion in inertial confinement fusion: Shock timing and perturbation evolution
journal, January 2006

  • Goncharov, V. N.; Gotchev, O. V.; Vianello, E.
  • Physics of Plasmas, Vol. 13, Issue 1
  • DOI: 10.1063/1.2162803

The effect of laser spot shapes on polar-direct-drive implosions on the National Ignition Facility
journal, March 2015

  • Weilacher, F.; Radha, P. B.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 22, Issue 3
  • DOI: 10.1063/1.4913988

Two-dimensional simulations of plastic-shell, direct-drive implosions on OMEGA
journal, March 2005

  • Radha, P. B.; Goncharov, V. N.; Collins, T. J. B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1857530

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Backscatter measurements for NIF ignition targets (invited)
journal, October 2010

  • Moody, J. D.; Datte, P.; Krauter, K.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3491035

Evaluating radiation induced noise effects on pixelated sensors for the National Ignition Facility
conference, September 2013

  • Datte, Philip; Manuel, Anastacia M.; Eckart, Mark
  • SPIE Optical Engineering + Applications, SPIE Proceedings
  • DOI: 10.1117/12.2026915

Self‐consistent stability analysis of ablation fronts in inertial confinement fusion
journal, May 1996

  • Betti, R.; Goncharov, V. N.; McCrory, R. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871664

A generalized scaling law for the ignition energy of inertial confinement fusion capsules
journal, January 2001


The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I
journal, March 1950

  • Taylor, Geoffrey Ingram
  • Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, Vol. 201, Issue 1065, p. 192-196
  • DOI: 10.1098/rspa.1950.0052

SPECT3D – A multi-dimensional collisional-radiative code for generating diagnostic signatures based on hydrodynamics and PIC simulation output
journal, May 2007


Full aperture backscatter station measurement system on the National Ignition Facility
journal, October 2004

  • Bower, D. E.; McCarville, T. J.; Alvarez, S. S.
  • Review of Scientific Instruments, Vol. 75, Issue 10
  • DOI: 10.1063/1.1791749

Laser irradiance scaling in polar direct drive implosions on the National Ignition Facility
journal, September 2015

  • Murphy, T. J.; Krasheninnikova, N. S.; Kyrala, G. A.
  • Physics of Plasmas, Vol. 22, Issue 9
  • DOI: 10.1063/1.4931092

Improved non-local electron thermal transport model for two-dimensional radiation hydrodynamics simulations
journal, August 2015

  • Cao, Duc; Moses, Gregory; Delettrez, Jacques
  • Physics of Plasmas, Vol. 22, Issue 8
  • DOI: 10.1063/1.4928445

Generalized Measurable Ignition Criterion for Inertial Confinement Fusion
journal, April 2010


Rayleigh-Taylor Instability and Laser-Pellet Fusion
journal, September 1974


First-principles equation of state of polystyrene and its effect on inertial confinement fusion implosions
journal, October 2015


Effect of laser illumination nonuniformity on the analysis of time-resolved x-ray measurements in uv spherical transport experiments
journal, October 1987


Initial performance results of the OMEGA laser system
journal, January 1997


Laser beam smoothing caused by the small-spatial-scale B integral
journal, January 2002

  • Marozas, J. A.; Regan, S. P.; Kelly, J. H.
  • Journal of the Optical Society of America B, Vol. 19, Issue 1
  • DOI: 10.1364/JOSAB.19.000007

Plasma-Density Determination from X-Ray Radiography of Laser-Driven Spherical Implosions
journal, May 2009


Mitigating Laser Imprint in Direct-Drive Inertial Confinement Fusion Implosions with High- Z Dopants
journal, May 2012


Enhanced Direct-Drive Implosions with Thin High- Z Ablation Layers
journal, February 2008


Indications of Strongly Flux-Limited Electron Thermal Conduction in Laser-Target Experiments
journal, March 1975


Demonstration of the Improved Rocket Efficiency in Direct-Drive Implosions Using Different Ablator Materials
journal, December 2013


Works referencing / citing this record:

Mitigation of cross-beam energy transfer in ignition-scale polar-direct-drive target designs for the National Ignition Facility
journal, July 2018

  • Collins, T. J. B.; Marozas, J. A.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5039513

Laser-direct-drive program: Promise, challenge, and path forward
journal, March 2017

  • Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
  • Matter and Radiation at Extremes, Vol. 2, Issue 2
  • DOI: 10.1016/j.mre.2017.03.001

The National Direct-Drive Inertial Confinement Fusion Program
journal, December 2018


Mitigating laser-imprint effects in direct-drive inertial confinement fusion implosions with an above-critical-density foam layer
journal, August 2018

  • Hu, S. X.; Theobald, W.; Radha, P. B.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5044609

Development and modeling of a polar-direct-drive exploding pusher platform at the National Ignition Facility
journal, July 2018

  • Ellison, C. Leland; Whitley, Heather D.; Brown, Colin R. D.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5025724

Study of high-Z-coated ignition target by detailed configuration accounting atomic physics for direct-drive inertial confinement fusion
journal, November 2018


Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181