DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility

Abstract

In indirect-drive implosions, the final core hot spot energy and pressure and, hence, neutron yield attainable in 1D increase with increasing laser peak power and, hence, radiation drive temperature at the fixed capsule and Hohlraum size. Here we present simple analytic scalings validated by 1D simulations that quantify the improvement in performance and use this to explain existing data and simulation trends. Extrapolating to the 500 TW National Ignition Facility peak power limit in a low gas-fill 5.4 mm diameter Hohlraum based on existing high adiabat implosion data at 400 TW, 1.3 MJ and 1 × 1016 yield, we find that a 2–3 × 1017 yield (0.5–0.7 MJ) is plausible using only 1.8 MJ of laser energy. Based on existing data varying deuterium–tritium (DT) fuel thickness and dopant areal density, further improvements should be possible by increasing DT fuel areal density, and hence confinement time and yield amplification.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1] more »; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1];  [3] « less
  1. Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
  2. University of Rochester, NY (United States). Laboratory for Laser Energetics
  3. Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
  4. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); General Atomics
OSTI Identifier:
2280485
Alternate Identifier(s):
OSTI ID: 1960092
Report Number(s):
LLNL-JRNL-830844
Journal ID: ISSN 1070-664X; 1047234
Grant/Contract Number:  
AC52-07NA27344; NA0001808
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 30; Journal Issue: 3; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; alpha particles; nuclear fusion; deuterium; tritium; Lawson criterion; ignition; plasma confinement; plasma instabilities; growth factors

Citation Formats

Baker, K. L., Thomas, C. A., Landen, O. L., Haan, S., Lindl, J. D., Casey, D. T., Young, C., Nora, R., Hurricane, O. A., Callahan, D. A., Jones, O., Berzak Hopkins, L., Khan, S., Spears, B. K., Le Pape, S., Meezan, N. B., Ho, D. D., Döppner, T., Hinkel, D., Dewald, E. L., Tommasini, R., Hohenberger, M., Weber, C., Clark, D., Woods, D. T., Milovich, J. L., Strozzi, D., Kritcher, A., Robey, H. F., Ross, J. S., Smalyuk, V. A., Amendt, P. A., Bachmann, B., Benedetti, L. R., Bionta, R., Celliers, P. M., Fittinghoff, D., Goyon, C., Hatarik, R., Izumi, N., Gatu Johnson, M., Kyrala, G., Ma, T., Meaney, K., Millot, M., Nagel, S. R., Patel, P. K., Turnbull, D., Volegov, P. L., Yeamans, C., and Wilde, C. Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility. United States: N. p., 2023. Web. doi:10.1063/5.0131180.
Baker, K. L., Thomas, C. A., Landen, O. L., Haan, S., Lindl, J. D., Casey, D. T., Young, C., Nora, R., Hurricane, O. A., Callahan, D. A., Jones, O., Berzak Hopkins, L., Khan, S., Spears, B. K., Le Pape, S., Meezan, N. B., Ho, D. D., Döppner, T., Hinkel, D., Dewald, E. L., Tommasini, R., Hohenberger, M., Weber, C., Clark, D., Woods, D. T., Milovich, J. L., Strozzi, D., Kritcher, A., Robey, H. F., Ross, J. S., Smalyuk, V. A., Amendt, P. A., Bachmann, B., Benedetti, L. R., Bionta, R., Celliers, P. M., Fittinghoff, D., Goyon, C., Hatarik, R., Izumi, N., Gatu Johnson, M., Kyrala, G., Ma, T., Meaney, K., Millot, M., Nagel, S. R., Patel, P. K., Turnbull, D., Volegov, P. L., Yeamans, C., & Wilde, C. Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility. United States. https://doi.org/10.1063/5.0131180
Baker, K. L., Thomas, C. A., Landen, O. L., Haan, S., Lindl, J. D., Casey, D. T., Young, C., Nora, R., Hurricane, O. A., Callahan, D. A., Jones, O., Berzak Hopkins, L., Khan, S., Spears, B. K., Le Pape, S., Meezan, N. B., Ho, D. D., Döppner, T., Hinkel, D., Dewald, E. L., Tommasini, R., Hohenberger, M., Weber, C., Clark, D., Woods, D. T., Milovich, J. L., Strozzi, D., Kritcher, A., Robey, H. F., Ross, J. S., Smalyuk, V. A., Amendt, P. A., Bachmann, B., Benedetti, L. R., Bionta, R., Celliers, P. M., Fittinghoff, D., Goyon, C., Hatarik, R., Izumi, N., Gatu Johnson, M., Kyrala, G., Ma, T., Meaney, K., Millot, M., Nagel, S. R., Patel, P. K., Turnbull, D., Volegov, P. L., Yeamans, C., and Wilde, C. Mon . "Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility". United States. https://doi.org/10.1063/5.0131180. https://www.osti.gov/servlets/purl/2280485.
@article{osti_2280485,
title = {Reaching a burning plasma and ignition using smaller capsules/Hohlraums, higher radiation temperatures, and thicker ablator/ice on the national ignition facility},
author = {Baker, K. L. and Thomas, C. A. and Landen, O. L. and Haan, S. and Lindl, J. D. and Casey, D. T. and Young, C. and Nora, R. and Hurricane, O. A. and Callahan, D. A. and Jones, O. and Berzak Hopkins, L. and Khan, S. and Spears, B. K. and Le Pape, S. and Meezan, N. B. and Ho, D. D. and Döppner, T. and Hinkel, D. and Dewald, E. L. and Tommasini, R. and Hohenberger, M. and Weber, C. and Clark, D. and Woods, D. T. and Milovich, J. L. and Strozzi, D. and Kritcher, A. and Robey, H. F. and Ross, J. S. and Smalyuk, V. A. and Amendt, P. A. and Bachmann, B. and Benedetti, L. R. and Bionta, R. and Celliers, P. M. and Fittinghoff, D. and Goyon, C. and Hatarik, R. and Izumi, N. and Gatu Johnson, M. and Kyrala, G. and Ma, T. and Meaney, K. and Millot, M. and Nagel, S. R. and Patel, P. K. and Turnbull, D. and Volegov, P. L. and Yeamans, C. and Wilde, C.},
abstractNote = {In indirect-drive implosions, the final core hot spot energy and pressure and, hence, neutron yield attainable in 1D increase with increasing laser peak power and, hence, radiation drive temperature at the fixed capsule and Hohlraum size. Here we present simple analytic scalings validated by 1D simulations that quantify the improvement in performance and use this to explain existing data and simulation trends. Extrapolating to the 500 TW National Ignition Facility peak power limit in a low gas-fill 5.4 mm diameter Hohlraum based on existing high adiabat implosion data at 400 TW, 1.3 MJ and 1 × 1016 yield, we find that a 2–3 × 1017 yield (0.5–0.7 MJ) is plausible using only 1.8 MJ of laser energy. Based on existing data varying deuterium–tritium (DT) fuel thickness and dopant areal density, further improvements should be possible by increasing DT fuel areal density, and hence confinement time and yield amplification.},
doi = {10.1063/5.0131180},
journal = {Physics of Plasmas},
number = 3,
volume = 30,
place = {United States},
year = {Mon Mar 06 00:00:00 EST 2023},
month = {Mon Mar 06 00:00:00 EST 2023}
}

Works referenced in this record:

High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
journal, September 2018


A generalized scaling law for the ignition energy of inertial confinement fusion capsules
journal, January 2001


Hydroscaling indirect-drive implosions on the National Ignition Facility
journal, June 2022

  • Baker, K. L.; Jones, O.; Weber, C.
  • Physics of Plasmas, Vol. 29, Issue 6
  • DOI: 10.1063/5.0080732

Alpha heating of indirect-drive layered implosions on the National Ignition Facility
journal, January 2023


Hotspot parameter scaling with velocity and yield for high-adiabat layered implosions at the National Ignition Facility
journal, August 2020


Hotspot conditions achieved in inertial confinement fusion experiments on the National Ignition Facility
journal, May 2020

  • Patel, P. K.; Springer, P. T.; Weber, C. R.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/5.0003298

The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

Deficiencies in compression and yield in x-ray-driven implosions
journal, November 2020

  • Thomas, C. A.; Campbell, E. M.; Baker, K. L.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0022187

Principal factors in performance of indirect-drive laser fusion experiments
journal, November 2020

  • Thomas, C. A.; Campbell, E. M.; Baker, K. L.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0019191

Experiments to explore the influence of pulse shaping at the National Ignition Facility
journal, November 2020

  • Thomas, C. A.; Campbell, E. M.; Baker, K. L.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0019193

Maintaining low-mode symmetry control with extended pulse shapes for lower-adiabat Bigfoot implosions on the National Ignition Facility
journal, November 2019

  • Hohenberger, M.; Casey, D. T.; Thomas, C. A.
  • Physics of Plasmas, Vol. 26, Issue 11
  • DOI: 10.1063/1.5121435

Stimulated backscatter of laser light from BigFoot hohlraums on the National Ignition Facility
journal, January 2019

  • Berger, R. L.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 26, Issue 1
  • DOI: 10.1063/1.5079234

High-density carbon ablator experiments on the National Ignition Facility
journal, May 2014

  • MacKinnon, A. J.; Meezan, N. B.; Ross, J. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876611

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


First High-Convergence Cryogenic Implosion in a Near-Vacuum Hohlraum
journal, April 2015


Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums
journal, June 2015

  • Meezan, N. B.; Berzak Hopkins, L. F.; Le Pape, S.
  • Physics of Plasmas, Vol. 22, Issue 6
  • DOI: 10.1063/1.4921947

Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Symmetry control of an indirectly driven high-density-carbon implosion at high convergence and high velocity
journal, May 2017

  • Divol, L.; Pak, A.; Berzak Hopkins, L. F.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4982215

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Numerical modeling of Hohlraum radiation conditions: Spatial and spectral variations due to sample position, beam pointing, and Hohlraum geometry
journal, December 2005

  • Cohen, David H.; Landen, Otto L.; MacFarlane, Joseph J.
  • Physics of Plasmas, Vol. 12, Issue 12
  • DOI: 10.1063/1.2146863

Fuel convergence sensitivity in indirect drive implosions
journal, April 2021

  • Landen, O. L.; Lindl, J. D.; Haan, S. W.
  • Physics of Plasmas, Vol. 28, Issue 4
  • DOI: 10.1063/5.0033256

X-ray ablation rates in inertial confinement fusion capsule materials
journal, March 2011

  • Olson, R. E.; Rochau, G. A.; Landen, O. L.
  • Physics of Plasmas, Vol. 18, Issue 3
  • DOI: 10.1063/1.3566009

Convergent ablation measurements of plastic ablators in gas-filled rugby hohlraums on OMEGA
journal, October 2015

  • Casner, A.; Jalinaud, T.; Masse, L.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4933127

X-ray driven implosions at ignition relevant velocities on the National Ignition Facility
journal, May 2013

  • Meezan, N. B.; MacKinnon, A. J.; Hicks, D. G.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803915

Progress toward a self-consistent set of 1D ignition capsule metrics in ICF
journal, December 2018

  • Lindl, J. D.; Haan, S. W.; Landen, O. L.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5049595

Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

Deceleration phase of inertial confinement fusion implosions
journal, May 2002

  • Betti, R.; Anderson, K.; Goncharov, V. N.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459458

Impact of hohlraum cooling on ignition metrics for inertial fusion implosions
journal, January 2023

  • Lindl, John D.; Haan, Steven W.; Landen, Otto L.
  • Physics of Plasmas, Vol. 30, Issue 1
  • DOI: 10.1063/5.0113138

Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

Acceleration and deceleration model of indirect drive ICF capsules
journal, November 2006


Hohlraum energetics scaling to 520 TW on the National Ignition Facility
journal, May 2013

  • Kline, J. L.; Callahan, D. A.; Glenzer, S. H.
  • Physics of Plasmas, Vol. 20, Issue 5
  • DOI: 10.1063/1.4803907

Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

Achieving 280 Gbar hot spot pressure in DT-layered CH capsule implosions at the National Ignition Facility
journal, April 2020

  • Döppner, T.; Hinkel, D. E.; Jarrott, L. C.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/1.5135921

Exploring the limits of case-to-capsule ratio, pulse length, and picket energy for symmetric hohlraum drive on the National Ignition Facility Laser
journal, May 2018

  • Callahan, D. A.; Hurricane, O. A.; Ralph, J. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5020057

Low mode implosion symmetry sensitivity in low gas-fill NIF cylindrical hohlraums
journal, February 2021

  • Izumi, N.; Woods, D. T.; Meezan, N. B.
  • Physics of Plasmas, Vol. 28, Issue 2
  • DOI: 10.1063/5.0030826

Demonstration of time-dependent symmetry control in hohlraums by drive-beam staggering
journal, January 2000

  • Turner, R. E.; Amendt, P.; Landen, O. L.
  • Physics of Plasmas, Vol. 7, Issue 1
  • DOI: 10.1063/1.873801

Optimization of Backscatter and Symmetry for Laser Fusion Experiments Using Multiple Tunable Wavelengths
journal, October 2022


Record Energetics for an Inertial Fusion Implosion at NIF
journal, January 2021


Achieving record hot spot energies with large HDC implosions on NIF in HYBRID-E
journal, July 2021

  • Kritcher, A. L.; Zylstra, A. B.; Callahan, D. A.
  • Physics of Plasmas, Vol. 28, Issue 7
  • DOI: 10.1063/5.0047841

Symmetric fielding of the largest diamond capsule implosions on the NIF
journal, May 2020

  • Kritcher, A. L.; Casey, D. T.; Thomas, C. A.
  • Physics of Plasmas, Vol. 27, Issue 5, 052710
  • DOI: 10.1063/5.0004221

Integrated performance of large HDC-capsule implosions on the National Ignition Facility
journal, November 2020

  • Hohenberger, M.; Casey, D. T.; Kritcher, A. L.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0019083

The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

High-Adiabat High-Foot Inertial Confinement Fusion Implosion Experiments on the National Ignition Facility
journal, February 2014


Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Optimization of capsule dopant levels to improve fuel areal density*
journal, November 2020


Adiabat-shaping in indirect drive inertial confinement fusion
journal, May 2015

  • Baker, K. L.; Robey, H. F.; Milovich, J. L.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4919694

Improved Performance of High Areal Density Indirect Drive Implosions at the National Ignition Facility using a Four-Shock Adiabat Shaped Drive
journal, September 2015


Experimental results of radiation-driven, layered deuterium-tritium implosions with adiabat-shaped drives at the National Ignition Facility
journal, October 2016

  • Smalyuk, V. A.; Robey, H. F.; Döppner, T.
  • Physics of Plasmas, Vol. 23, Issue 10
  • DOI: 10.1063/1.4964919

The I-Raum: A new shaped hohlraum for improved inner beam propagation in indirectly-driven ICF implosions on the National Ignition Facility
journal, January 2018

  • Robey, H. F.; Berzak Hopkins, L.; Milovich, J. L.
  • Physics of Plasmas, Vol. 25, Issue 1
  • DOI: 10.1063/1.5010922

Experimental achievement and signatures of ignition at the National Ignition Facility
journal, August 2022


Design of an inertial fusion experiment exceeding the Lawson criterion for ignition
journal, August 2022


Lawson Criterion for Ignition Exceeded in an Inertial Fusion Experiment
journal, August 2022


Improving the hot-spot pressure and demonstrating ignition hydrodynamic equivalence in cryogenic deuterium–tritium implosions on OMEGA
journal, May 2014

  • Goncharov, V. N.; Sangster, T. C.; Betti, R.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4876618

Precision Shock Tuning on the National Ignition Facility
journal, May 2012


Progress in the indirect-drive National Ignition Campaign
journal, November 2012


Three dimensional low-mode areal-density non-uniformities in indirect-drive implosions at the National Ignition Facility
journal, April 2021

  • Casey, D. T.; Landen, O. L.; Hartouni, E.
  • Physics of Plasmas, Vol. 28, Issue 4
  • DOI: 10.1063/5.0043589

Yield and compression trends and reproducibility at NIF*
journal, August 2020


Demonstration of High Performance in Layered Deuterium-Tritium Capsule Implosions in Uranium Hohlraums at the National Ignition Facility
journal, July 2015


Development of Improved Radiation Drive Environment for High Foot Implosions at the National Ignition Facility
journal, November 2016


Design of inertial fusion implosions reaching the burning plasma regime
journal, January 2022


Increasing stagnation pressure and thermonuclear performance of inertial confinement fusion capsules by the introduction of a high-Z dopant
journal, August 2018

  • Berzak Hopkins, L.; Divol, L.; Weber, C.
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5033459