In the quest for reaching ignition of deuterium-tritium (DT) fuel capsule implosions, experiments on the National Ignition Facility (NIF) have shown lower final fuel areal densities than simulated. Possible explanations for reduced compression are higher preheat that can increase the ablator-DT ice density jump and induce mix at that interface or reverberating shocks. We are hence developing x-ray Refraction Enhanced Radiography (RER) to infer the inflight density profiles in layered fuel capsule implosions. We use a 5 μm slit backlit by a Ni 7.8 keV He-α NIF laser driven x-ray source positioned at 20 mm from the capsule to castmore »
Search for: All records
46 results for: All records
Author ORCID ID is 0000000214998217
Full Text and Citations
-
-
Hydrodynamic instability growth of capsule support membranes (or “tents”) has been recognized as one of the major contributors to the performance degradation in high-compression plastic capsule implosions at the National Ignition Facility (NIF). The capsules were supported by tents because the nominal 10-μm diameter fill tubes were not strong enough to support capsules by themselves in indirect-drive implosions on NIF. After it was recognized that the tents had a significant impact of implosion's stability, new alternative support methods were investigated. While some of these methods completely eliminated tent, other concepts still used tents, but concentrated on mitigating their impact. Themore »
-
High-mode perturbations and low-mode asymmetries were measured in the deceleration phase of indirectly-driven, deuterium gas filled inertial confinement fusion (ICF) capsule implosions at convergence ratios of 10 to 15, using a new “enhanced emission” technique at the National Ignition Facility (NIF) [E. M. Campbell, R. Cauble, and B. A. Remington, AIP Conf. Proc. 429, 3 (1998)]. In these experiments, a high spatial resolution Kirkpatrick-Baez microscope was used to image the x-ray emission from the inner surface of a high-density-carbon (HDC) capsule’s shell. Use of a high atomic number dopant in the shell enabled time-resolved observations of shell perturbations penetrating intomore »Cited by 2
-
Here, we have built an absolutely calibrated, highly efficient, Bragg crystal spectrometer in von Hamos geometry. This zinc von Hamos spectrometer uses a crystal made from highly oriented pyrolytic graphite that is cylindrically bent along the non-dispersive axis. It is tuned to measure x-ray spectra in the 7–10 keV range and has been designed to be used on a Ten Inch Manipulator for the Omega and OmegaEP target chambers at the Laboratory for Laser Energetics in Rochester, USA. Significant shielding strategies and fluorescence mitigation have been implemented in addition to an imaging plate detector making it well suited for experimentsmore »Cited by 1Full Text Available
-
The design principles of a xenon gas shield device that is intended to protect optical components from x-ray induced opacity (“x-ray blanking”) have been experimentally demonstrated at the OMEGA-60 Laser Facility at the Laboratory for Laser Energetics, University of Rochester. A volume of xenon gas placed in front of an optical component absorbs the incoming soft x-ray radiation but transmits optical and ultra-violet radiation. The time-resolved optical (532 nm) transmission of samples was recorded as they were exposed to soft x-rays produced by a gold sphere source (1.5 kJ sr $-$1, 250–300 eV). Blanking of fused silica (SiO 2) wasmore »
-
An Optical Thomson Scattering (OTS) diagnostic is currently being developed for the National Ignition Facility (NIF) at Lawrence Livermore National Labs (LLNL). This diagnostic is designed to make measurements of hohlraum plasma parameters, such as the electron temperature and density, during inertial confinement fusion (ICF) experiments. NIF ICF experiments present a very challenging environment for optical measurements; by their very nature hohlraums produce intense soft x-ray emission, which can cause “blanking” (radiation induced opacity) of the radiation facing optical components. The soft x-ray fluence at the surface of the OTS blast shield, 60 cm from the hohlraum, is estimated tomore »Cited by 2Full Text Available
-
Here, we have developed and fielded x-ray penumbral imaging on the National Ignition Facility in order to enable sub-10 μm resolution imaging of stagnated plasma cores (hot spots) of spherically shock compressed spheres and shell implosion targets. By utilizing circular tungsten and tantalum apertures with diameters ranging from 20 μm to 2 mm, in combination with image plate and gated x-ray detectors as well as imaging magnifications ranging from 4 to 64, we have demonstrated high-resolution imaging of hot spot plasmas at x-ray energies above 5 keV. Here we give an overview of the experimental design criteria involved and demonstratemore »Cited by 6Full Text Available
"Cited by" information provided by Web of Science.
DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.