DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results

Abstract

We report magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.

Authors:
ORCiD logo [1]; ORCiD logo [2];  [3]; ORCiD logo [2]; ORCiD logo [3];  [3];  [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [4]
  1. Princeton University, NJ (United States)
  2. University of Lisbon (Portugal)
  3. Univ. of California, Los Angeles, CA (United States)
  4. Princeton University, NJ (United States); Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
Publication Date:
Research Org.:
Princeton Plasma Physics Laboratory (PPPL), Princeton, NJ (United States)
Sponsoring Org.:
USDOE; National Science Foundation (NSF); Defense Threat Reduction Agency (DTRA); European Research Council (ERC)
OSTI Identifier:
1887976
Alternate Identifier(s):
OSTI ID: 1862698
Grant/Contract Number:  
SC0008655; SC00016249; PHY-2010248; B643014; ERC-2015-AdG 695088
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 29; Journal Issue: 4; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Schaeffer, D. B., Cruz, F. D., Dorst, R. S., Cruz, F., Heuer, P. V., Constantin, C. G., Pribyl, P., Niemann, C., Silva, L. O., and Bhattacharjee, A. Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results. United States: N. p., 2022. Web. doi:10.1063/5.0084353.
Schaeffer, D. B., Cruz, F. D., Dorst, R. S., Cruz, F., Heuer, P. V., Constantin, C. G., Pribyl, P., Niemann, C., Silva, L. O., & Bhattacharjee, A. Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results. United States. https://doi.org/10.1063/5.0084353
Schaeffer, D. B., Cruz, F. D., Dorst, R. S., Cruz, F., Heuer, P. V., Constantin, C. G., Pribyl, P., Niemann, C., Silva, L. O., and Bhattacharjee, A. Tue . "Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results". United States. https://doi.org/10.1063/5.0084353. https://www.osti.gov/servlets/purl/1887976.
@article{osti_1887976,
title = {Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results},
author = {Schaeffer, D. B. and Cruz, F. D. and Dorst, R. S. and Cruz, F. and Heuer, P. V. and Constantin, C. G. and Pribyl, P. and Niemann, C. and Silva, L. O. and Bhattacharjee, A.},
abstractNote = {We report magnetospheres are a ubiquitous feature of magnetized bodies embedded in a plasma flow. While large planetary magnetospheres have been studied for decades by spacecraft, ion-scale “mini” magnetospheres can provide a unique environment to study kinetic-scale, collisionless plasma physics in the laboratory to help validate models of larger systems. In this work, we present preliminary experiments of ion-scale magnetospheres performed on a unique high-repetition-rate platform developed for the Large Plasma Device at the University of California, Los Angeles. The experiments utilize a high-repetition-rate laser to drive a fast plasma flow into a pulsed dipole magnetic field embedded in a uniform magnetized background plasma. 2D maps of the magnetic field with high spatial and temporal resolution are measured with magnetic flux probes to examine the evolution of magnetosphere and current density structures for a range of dipole and upstream parameters. The results are further compared to 2D particle-in-cell simulations to identify key observational signatures of the kinetic-scale structures and dynamics of the laser-driven plasma. We find that distinct 2D kinetic-scale magnetopause and diamagnetic current structures are formed at higher dipole moments, and their locations are consistent with predictions based on pressure balances and energy conservation.},
doi = {10.1063/5.0084353},
journal = {Physics of Plasmas},
number = 4,
volume = 29,
place = {United States},
year = {Tue Apr 12 00:00:00 EDT 2022},
month = {Tue Apr 12 00:00:00 EDT 2022}
}

Works referenced in this record:

Minimagnetospheres above the Lunar Surface and the Formation of Lunar Swirls
journal, August 2012


Macrostructure of collisionless bow shocks: 1. Scale lengths
journal, January 2005

  • Omidi, N.; Blanco-Cano, X.; Russell, C. T.
  • Journal of Geophysical Research, Vol. 110, Issue A12
  • DOI: 10.1029/2005JA011169

The science of space weather
journal, September 2008

  • Eastwood, Jonathan P.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 366, Issue 1884
  • DOI: 10.1098/rsta.2008.0161

Three-dimensional global hybrid simulation of dayside dynamics associated with the quasi-parallel bow shock
journal, January 2005

  • Lin, Y.; Wang, X. Y.
  • Journal of Geophysical Research, Vol. 110, Issue A12
  • DOI: 10.1029/2005JA011243

First observation of a mini-magnetosphere above a lunar magnetic anomaly using energetic neutral atoms: LUNAR MINI-MAGNETOSPHERE
journal, March 2010

  • Wieser, Martin; Barabash, Stas; Futaana, Yoshifumi
  • Geophysical Research Letters, Vol. 37, Issue 5
  • DOI: 10.1029/2009GL041721

Mini-magnetosphere: Laboratory experiment, physical model and Hall MHD simulation
journal, August 2013

  • Shaikhislamov, I. F.; Antonov, V. M.; Zakharov, Yu. P.
  • Advances in Space Research, Vol. 52, Issue 3
  • DOI: 10.1016/j.asr.2013.03.034

Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles
journal, February 2017

  • Cruz, F.; Alves, E. P.; Bamford, R. A.
  • Physics of Plasmas, Vol. 24, Issue 2
  • DOI: 10.1063/1.4975310

Electron and Ion Dynamics of the Solar Wind Interaction with a Weakly Outgassing Comet
journal, May 2017


Dynamics of exploding plasmas in a large magnetized plasma
journal, January 2013

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773911

Stellar winds and planetary bodies simulations: Magnetized obstacles in super-Alfvénic and sub-Alfvénic flows
journal, March 2017


Fast gated imaging of the collisionless interaction of a laser-produced and magnetized ambient plasma
journal, March 2017


Momentum transfer of solar wind plasma in a kinetic scale magnetosphere
journal, March 2012

  • Moritaka, Toseo; Kajimura, Yoshihiro; Usui, Hideyuki
  • Physics of Plasmas, Vol. 19, Issue 3
  • DOI: 10.1063/1.3683560

Laser-plasma simulations of artificial magnetosphere formed by giant coronal mass ejections
journal, February 2009

  • Zakharov, Yuri P.; Ponomarenko, Arnold G.; Vchivkov, Konstantin V.
  • Astrophysics and Space Science, Vol. 322, Issue 1-4
  • DOI: 10.1007/s10509-009-0002-1

Hybrid simulations of mini-magnetospheres in the laboratory
journal, June 2008


Laboratory experiments simulating solar wind driven magnetospheres
journal, April 2009

  • Brady, P.; Ditmire, T.; Horton, W.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3085786

Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators
journal, November 2013


A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

Density cavity observed over a strong lunar crustal magnetic anomaly in the solar wind: A mini-magnetosphere?
journal, May 2008


The Earth’s Magnetosphere: A Systems Science Overview and Assessment
journal, July 2018


The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics
journal, February 2016

  • Gekelman, W.; Pribyl, P.; Lucky, Z.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941079

Large-Larmor-radius interchange instability
journal, November 1987


Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

Theory and Simulation of the Rayleigh-Taylor Instability in the Limit of Large Larmor Radius
journal, December 1987


Design, construction, and properties of the large plasma research device−The LAPD at UCLA
journal, December 1991

  • Gekelman, W.; Pfister, H.; Lucky, Z.
  • Review of Scientific Instruments, Vol. 62, Issue 12
  • DOI: 10.1063/1.1142175

Structure of an Exploding Laser-Produced Plasma
journal, November 2010


Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas
journal, November 2009

  • Everson, E. T.; Pribyl, P.; Constantin, C. G.
  • Review of Scientific Instruments, Vol. 80, Issue 11
  • DOI: 10.1063/1.3246785

Laboratory facility for magnetospheric simulation
journal, January 1995

  • Yur, G.; Rahman, H. U.; Birn, J.
  • Journal of Geophysical Research, Vol. 100, Issue A12
  • DOI: 10.1029/95JA01162

Laboratory model of magnetosphere created by strong plasma perturbation with frozen-in magnetic field
journal, October 2014


Design and operation of a 150 W near diffraction-limited laser amplifier with SBS wavefront correction
journal, January 1995

  • Dane, C. B.; Zapata, L. E.; Neuman, W. A.
  • IEEE Journal of Quantum Electronics, Vol. 31, Issue 1
  • DOI: 10.1109/3.341719

Space Weather: Terrestrial Perspective
journal, January 2007


The link between shocks, turbulence, and magnetic reconnection in collisionless plasmas
journal, June 2014

  • Karimabadi, H.; Roytershteyn, V.; Vu, H. X.
  • Physics of Plasmas, Vol. 21, Issue 6
  • DOI: 10.1063/1.4882875

Dipolar magnetospheres and their characterization as a function of magnetic moment
journal, January 2004


HYPERS simulations of solar wind interactions with the Earth's magnetosphere and the Moon
journal, April 2021

  • Omelchenko, Yuri A.; Roytershteyn, Vadim; Chen, Li-Jen
  • Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 215
  • DOI: 10.1016/j.jastp.2021.105581

Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics
journal, July 2016

  • Schaeffer, D. B.; Bondarenko, A. S.; Everson, E. T.
  • Journal of Applied Physics, Vol. 120, Issue 4
  • DOI: 10.1063/1.4959148

OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
book, January 2002

  • Fonseca, R. A.; Silva, L. O.; Tsung, F. S.
  • Computational Science — ICCS 2002, p. 342-351
  • DOI: 10.1007/3-540-47789-6_36

Evidence for small-scale collisionless shocks at the Moon from ARTEMIS: Moon Shocks
journal, November 2014

  • Halekas, J. S.; Poppe, A. R.; McFadden, J. P.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061973

Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
journal, March 2009

  • Constantin, C.; Gekelman, W.; Pribyl, P.
  • Astrophysics and Space Science, Vol. 322, Issue 1-4
  • DOI: 10.1007/s10509-009-0012-z

Magnetotail structures in a laboratory magnetosphere
journal, July 1999

  • Yur, G.; Chang, T. -F.; Rahman, H. U.
  • Journal of Geophysical Research: Space Physics, Vol. 104, Issue A7
  • DOI: 10.1029/98JA02193

Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma
journal, August 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Physics of Plasmas, Vol. 24, Issue 8
  • DOI: 10.1063/1.4995480

Birth of a comet magnetosphere: A spring of water ions
journal, January 2015

  • Nilsson, Hans; Stenberg Wieser, Gabriella; Behar, Etienne
  • Science, Vol. 347, Issue 6220
  • DOI: 10.1126/science.aaa0571

Building a Weakly Outgassing Comet from a Generalized Ohm’s Law
journal, August 2019


Laser-driven, ion-scale magnetospheres in laboratory plasmas. II. Particle-in-cell simulations
journal, March 2022

  • Cruz, Filipe D.; Schaeffer, Derek B.; Cruz, Fábio
  • Physics of Plasmas, Vol. 29, Issue 3
  • DOI: 10.1063/5.0084354

Strong influence of lunar crustal fields on the solar wind flow
journal, February 2011

  • Lue, Charles; Futaana, Yoshifumi; Barabash, Stas
  • Geophysical Research Letters, Vol. 38, Issue 3
  • DOI: 10.1029/2010GL046215

Global hybrid simulations: Foreshock waves and cavitons under radial interplanetary magnetic field geometry: FORESHOCK WAVES AND CAVITONS
journal, January 2009

  • Blanco-Cano, X.; Omidi, N.; Russell, C. T.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A1
  • DOI: 10.1029/2008JA013406

Hybrid simulations of solar wind interaction with magnetized asteroids: General characteristics: SOLAR WIND INTERACTION WITH MAGNETIZED ASTEROIDS
journal, December 2002

  • Omidi, N.; Blanco-Cano, X.; Russell, C. T.
  • Journal of Geophysical Research: Space Physics, Vol. 107, Issue A12
  • DOI: 10.1029/2002JA009441