DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles

Abstract

We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shock in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.

Authors:
ORCiD logo [1];  [2];  [3];  [4]; ORCiD logo [5]; ORCiD logo [1]
  1. Univ. of Lisbon (Portugal). Inst. Superior Tecnico, Inst. of Plasmas and Nuclear Fusion, Group for Lasers and Plasmas (GoLP)
  2. Univ. of Lisbon (Portugal). Inst. Superior Tecnico, Inst. of Plasmas and Nuclear Fusion, Group for Lasers and Plasmas (GoLP); SLAC National Accelerator Lab., Menlo Park, CA (United States)
  3. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)
  4. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL); Univ. of Strathclyde, Glasgow, Scotland (United Kingdom)
  5. Univ. of Lisbon (Portugal). Inst. Superior Tecnico, Inst. of Plasmas and Nuclear Fusion, Group for Lasers and Plasmas (GoLP); Univ. of Lisbon (Portugal). Inst. Univ. de Lisboa (ISCTE-IUL), Dept. of Information Science and Technology (DCTI)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1353106
Grant/Contract Number:  
ERC-2015-AdG 695088; AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 24; Journal Issue: 2; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; mini magnetospheres; collisionless shocks; space physics; PIC simulations

Citation Formats

Cruz, F., Alves, E. P., Bamford, R. A., Bingham, R., Fonseca, R. A., and Silva, L. O. Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles. United States: N. p., 2017. Web. doi:10.1063/1.4975310.
Cruz, F., Alves, E. P., Bamford, R. A., Bingham, R., Fonseca, R. A., & Silva, L. O. Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles. United States. https://doi.org/10.1063/1.4975310
Cruz, F., Alves, E. P., Bamford, R. A., Bingham, R., Fonseca, R. A., and Silva, L. O. Mon . "Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles". United States. https://doi.org/10.1063/1.4975310. https://www.osti.gov/servlets/purl/1353106.
@article{osti_1353106,
title = {Formation of collisionless shocks in magnetized plasma interaction with kinetic-scale obstacles},
author = {Cruz, F. and Alves, E. P. and Bamford, R. A. and Bingham, R. and Fonseca, R. A. and Silva, L. O.},
abstractNote = {We investigate the formation of collisionless magnetized shocks triggered by the interaction between magnetized plasma flows and miniature-sized (order of plasma kinetic-scales) magnetic obstacles resorting to massively parallel, full particle-in-cell simulations, including the electron kinetics. The critical obstacle size to generate a compressed plasma region ahead of these objects is determined by independently varying the magnitude of the dipolar magnetic moment and the plasma magnetization. Here we find that the effective size of the obstacle depends on the relative orientation between the dipolar and plasma internal magnetic fields, and we show that this may be critical to form a shock in small-scale structures. We also study the microphysics of the magnetopause in different magnetic field configurations in 2D and compare the results with full 3D simulations. Finally, we evaluate the parameter range where such miniature magnetized shocks can be explored in laboratory experiments.},
doi = {10.1063/1.4975310},
journal = {Physics of Plasmas},
number = 2,
volume = 24,
place = {United States},
year = {Mon Feb 06 00:00:00 EST 2017},
month = {Mon Feb 06 00:00:00 EST 2017}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 11 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Minimagnetospheres above the Lunar Surface and the Formation of Lunar Swirls
journal, August 2012


A possible observation of a cometary bow shock
journal, October 1984

  • Russell, C. T.; Phillips, J. L.; Arghavani, M. R.
  • Geophysical Research Letters, Vol. 11, Issue 10
  • DOI: 10.1029/GL011i010p01022

Laboratory simulation of field aligned currents in an experiment on laser-produced plasma interacting with a magnetic dipole
journal, September 2009


Mini-magnetosphere: Laboratory experiment, physical model and Hall MHD simulation
journal, August 2013

  • Shaikhislamov, I. F.; Antonov, V. M.; Zakharov, Yu. P.
  • Advances in Space Research, Vol. 52, Issue 3
  • DOI: 10.1016/j.asr.2013.03.034

2.5D Particle and MHD simulations of mini-magnetospheres at the Moon: PARTICLE SIMULATIONS OF MINI-MAGNETOSPHERES
journal, December 2002

  • Harnett, Erika M.; Winglee, Robert M.
  • Journal of Geophysical Research: Space Physics, Vol. 107, Issue A12
  • DOI: 10.1029/2002JA009241

Dynamics of exploding plasmas in a large magnetized plasma
journal, January 2013

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773911

Diamagnetic Solar-Wind Cavity Discovered behind Moon
journal, November 1967


Observation of collisionless shocks in a large current-free laboratory plasma
journal, November 2014

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Geophysical Research Letters, Vol. 41, Issue 21
  • DOI: 10.1002/2014GL061820

2.5-D fluid simulations of the solar wind interacting with multiple dipoles on the surface of the Moon: MULTI-DIPOLE MINI-MAGNETOSPHERES
journal, February 2003

  • Harnett, Erika M.; Winglee, Robert M.
  • Journal of Geophysical Research: Space Physics, Vol. 108, Issue A2
  • DOI: 10.1029/2002JA009617

Hybrid simulations of mini-magnetospheres in the laboratory
journal, June 2008


How to make a magnetosphere
journal, June 2004


Theory and Simulation of Turbulent Heating by the Modified Two-Stream Instability
journal, January 1972


Shielding Space Travelers
journal, March 2006


Laboratory experiments simulating solar wind driven magnetospheres
journal, April 2009

  • Brady, P.; Ditmire, T.; Horton, W.
  • Physics of Plasmas, Vol. 16, Issue 4
  • DOI: 10.1063/1.3085786

Two-dimensional MHD simulation of the solar wind interaction with magnetic field anomalies on the surface of the Moon
journal, November 2000

  • Harnett, Erika M.; Winglee, Robert
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A11
  • DOI: 10.1029/2000JA000074

Exploiting multi-scale parallelism for large scale numerical modelling of laser wakefield accelerators
journal, November 2013


Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles
journal, December 2014

  • Ashida, Y.; Usui, H.; Shinohara, I.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904303

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows
journal, January 2015

  • Huntington, C. M.; Fiuza, F.; Ross, J. S.
  • Nature Physics, Vol. 11, Issue 2
  • DOI: 10.1038/nphys3178

High-energy Nd:glass laser facility for collisionless laboratory astrophysics
journal, March 2012


Design, construction, and properties of the large plasma research device−The LAPD at UCLA
journal, December 1991

  • Gekelman, W.; Pfister, H.; Lucky, Z.
  • Review of Scientific Instruments, Vol. 62, Issue 12
  • DOI: 10.1063/1.1142175

Generation of magnetized collisionless shocks by a novel, laser-driven magnetic piston
journal, July 2012

  • Schaeffer, D. B.; Everson, E. T.; Winske, D.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4736846

Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies
journal, April 2014


Formation of Plasmoid Chains in Magnetic Reconnection
journal, September 2009


The Magnetosphere
journal, May 1991


A long-lived lunar dynamo driven by continuous mechanical stirring
journal, November 2011

  • Dwyer, C. A.; Stevenson, D. J.; Nimmo, F.
  • Nature, Vol. 479, Issue 7372
  • DOI: 10.1038/nature10564

Mini-Magnetospheric Plasma Propulsion: Tapping the energy of the solar wind for spacecraft propulsion
journal, September 2000

  • Winglee, R. M.; Slough, J.; Ziemba, T.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A9
  • DOI: 10.1029/1999JA000334

Filamentation Instability of Counterstreaming Laser-Driven Plasmas
journal, November 2013


Magnetic reconnection
journal, March 2010


OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
book, January 2002

  • Fonseca, R. A.; Silva, L. O.; Tsung, F. S.
  • Computational Science — ICCS 2002, p. 342-351
  • DOI: 10.1007/3-540-47789-6_36

Sep Acceleration in cme Driven Shocks Using a Hybrid code
journal, August 2014


3d pic Simulations of Collisionless Shocks at Lunar Magnetic Anomalies and Their role in Forming Lunar Swirls
journal, October 2016


Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
journal, March 2009

  • Constantin, C.; Gekelman, W.; Pribyl, P.
  • Astrophysics and Space Science, Vol. 322, Issue 1-4
  • DOI: 10.1007/s10509-009-0012-z

Instability of current sheets and formation of plasmoid chains
journal, October 2007

  • Loureiro, N. F.; Schekochihin, A. A.; Cowley, S. C.
  • Physics of Plasmas, Vol. 14, Issue 10
  • DOI: 10.1063/1.2783986

Self-organized electromagnetic field structures in laser-produced counter-streaming plasmas
journal, September 2012

  • Kugland, N. L.; Ryutov, D. D.; Chang, P-Y.
  • Nature Physics, Vol. 8, Issue 11
  • DOI: 10.1038/nphys2434

Collisionless magnetic reconnection in a plasmoid chain
journal, January 2012

  • Markidis, S.; Henri, P.; Lapenta, G.
  • Nonlinear Processes in Geophysics, Vol. 19, Issue 1
  • DOI: 10.5194/npg-19-145-2012

High-Energy Petawatt Capability for the Omega Laser
journal, January 2005

  • Waxer, L. J.; Maywar, D. N.; Kelly, J. H.
  • Optics and Photonics News, Vol. 16, Issue 7
  • DOI: 10.1364/OPN.16.7.000030

Time history of the Martian dynamo from crater magnetic field analysis: TIME HISTORY OF THE MARTIAN DYNAMO
journal, July 2013

  • Lillis, Robert J.; Robbins, Stuart; Manga, Michael
  • Journal of Geophysical Research: Planets, Vol. 118, Issue 7
  • DOI: 10.1002/jgre.20105

General mechanism and dynamics of the solar wind interaction with lunar magnetic anomalies from 3‐D particle‐in‐cell simulations
journal, August 2015

  • Deca, Jan; Divin, Andrey; Lembège, Bertrand
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 8
  • DOI: 10.1002/2015JA021070

Magnetic reconnection
journal, January 1984


Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
book, January 2009


Hybrid simulations of mini-magnetospheres in the laboratory
text, January 2008


Collisionless magnetic reconnection in a plasmoid chain
text, January 2012


Mini-magnetospheres above the lunar surface and the formation of lunar swirls
text, January 2012


SEP acceleration in CME driven shocks using a hybrid code
text, January 2014


Collisionless interaction of an energetic laser produced plasma with a large magnetoplasma
journal, March 2009

  • Constantin, C.; Gekelman, W.; Pribyl, P.
  • Astrophysics and Space Science, Vol. 322, Issue 1-4
  • DOI: 10.1007/s10509-009-0012-z

Theory and Simulation of Turbulent Heating by the Modified Two-Stream Instability
journal, January 1972


Full kinetic simulations of plasma flow interactions with meso- and microscale magnetic dipoles
journal, December 2014

  • Ashida, Y.; Usui, H.; Shinohara, I.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904303

Collisionless magnetic reconnection in a plasmoid chain
text, January 2012


Filamentation instability of counter-streaming laser-driven plasmas
text, January 2013


Works referencing / citing this record:

A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

Electron acceleration by wave turbulence in a magnetized plasma
journal, March 2018