DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence

Abstract

In this work, the laminar coupling of energy between a laser-produced plasma and a background magnetized plasma was investigated via planar laser induced fluorescence diagnostic and magnetic flux probes. Experiments performed on the Large Plasma Device at the University of California, Los Angeles, mapped out the two-dimensional spatiotemporal evolution of the laser-plasma (debris) ion velocity distribution function (VDF) to assess debris-background coupling in a sub-Alfvénic regime. The acquisition of these data necessitates high repetition rate (1 Hz) as each dataset is the accumulation of thousands of laser shots, which would not be feasible in single-shot experiments. Fully kinetic, three-dimensional particle-in-cell simulations are compared to the measured VDFs to provide a framework in which we can understand the coupling of a sub-Alfvénic plasma flow through a preformed, magnetized plasma. The simulations display the same departure from the expected gyromotion of the debris plasma as observed in the experimental data, and in conjunction with the measured magnetic field traces, have led to the direct observation of the collisionless coupling via laminar fields.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [3]; ORCiD logo [4]; ORCiD logo [3]; ORCiD logo [1]
  1. Univ. of California, Los Angeles, CA (United States)
  2. Princeton Univ., NJ (United States)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Fusion Energy Sciences (FES); Defense Threat Reduction Agency (DTRA); National Science Foundation (NSF)
OSTI Identifier:
1922776
Alternate Identifier(s):
OSTI ID: 1882982; OSTI ID: 1959410
Report Number(s):
LA-UR-22-21403; LLNL-JRNL-844516
Journal ID: ISSN 1070-664X; TRN: US2312359
Grant/Contract Number:  
89233218CNA000001; B643014; B649519; SC0017900; DGE-1650604; AC52-07NA27344
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 29; Journal Issue: 8; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; planetary bow shocks; laser induced fluorescence; laser ablation; particle-in-cell method; astrophysics; optical filters; plasmas; flow visualization; carbon based materials

Citation Formats

Dorst, Robert S., Schaeffer, Derek B., Le, Ari Yitzchak, Pilgram, J. J., Constantin, C. G., Vincena, Stephen, Tripathi, Shreekrishna K. P., Winske, Dan, Larson, David, Cowee, Misa, and Niemann, Christoph. High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence. United States: N. p., 2022. Web. doi:10.1063/5.0097748.
Dorst, Robert S., Schaeffer, Derek B., Le, Ari Yitzchak, Pilgram, J. J., Constantin, C. G., Vincena, Stephen, Tripathi, Shreekrishna K. P., Winske, Dan, Larson, David, Cowee, Misa, & Niemann, Christoph. High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence. United States. https://doi.org/10.1063/5.0097748
Dorst, Robert S., Schaeffer, Derek B., Le, Ari Yitzchak, Pilgram, J. J., Constantin, C. G., Vincena, Stephen, Tripathi, Shreekrishna K. P., Winske, Dan, Larson, David, Cowee, Misa, and Niemann, Christoph. Tue . "High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence". United States. https://doi.org/10.1063/5.0097748. https://www.osti.gov/servlets/purl/1922776.
@article{osti_1922776,
title = {High repetition rate mapping of the interaction between a laser plasma and magnetized background plasma via laser induced fluorescence},
author = {Dorst, Robert S. and Schaeffer, Derek B. and Le, Ari Yitzchak and Pilgram, J. J. and Constantin, C. G. and Vincena, Stephen and Tripathi, Shreekrishna K. P. and Winske, Dan and Larson, David and Cowee, Misa and Niemann, Christoph},
abstractNote = {In this work, the laminar coupling of energy between a laser-produced plasma and a background magnetized plasma was investigated via planar laser induced fluorescence diagnostic and magnetic flux probes. Experiments performed on the Large Plasma Device at the University of California, Los Angeles, mapped out the two-dimensional spatiotemporal evolution of the laser-plasma (debris) ion velocity distribution function (VDF) to assess debris-background coupling in a sub-Alfvénic regime. The acquisition of these data necessitates high repetition rate (1 Hz) as each dataset is the accumulation of thousands of laser shots, which would not be feasible in single-shot experiments. Fully kinetic, three-dimensional particle-in-cell simulations are compared to the measured VDFs to provide a framework in which we can understand the coupling of a sub-Alfvénic plasma flow through a preformed, magnetized plasma. The simulations display the same departure from the expected gyromotion of the debris plasma as observed in the experimental data, and in conjunction with the measured magnetic field traces, have led to the direct observation of the collisionless coupling via laminar fields.},
doi = {10.1063/5.0097748},
journal = {Physics of Plasmas},
number = 8,
volume = 29,
place = {United States},
year = {Tue Aug 23 00:00:00 EDT 2022},
month = {Tue Aug 23 00:00:00 EDT 2022}
}

Works referenced in this record:

Deep learning: A guide for practitioners in the physical sciences
journal, August 2018

  • Spears, Brian K.; Brase, James; Bremer, Peer-Timo
  • Physics of Plasmas, Vol. 25, Issue 8
  • DOI: 10.1063/1.5020791

Fast ions and hot electrons in the laser–plasma interaction
journal, January 1986

  • Gitomer, S. J.; Jones, R. D.; Begay, F.
  • Physics of Fluids, Vol. 29, Issue 8
  • DOI: 10.1063/1.865510

Production of Alfvén Waves by a Rapidly Expanding Dense Plasma
journal, August 2001


Laboratory Observations of Ultra-low-frequency Analog Waves Driven by the Right-hand Resonant Ion Beam Instability
journal, February 2020

  • Heuer, Peter V.; Weidl, Martin. S.; Dorst, Robert S.
  • The Astrophysical Journal, Vol. 891, Issue 1
  • DOI: 10.3847/2041-8213/ab75f4

Generation and Evolution of High-Mach-Number Laser-Driven Magnetized Collisionless Shocks in the Laboratory
journal, July 2017


Hybrid simulations of a parallel collisionless shock in the large plasma device
journal, December 2016

  • Weidl, Martin S.; Winske, Dan; Jenko, Frank
  • Physics of Plasmas, Vol. 23, Issue 12
  • DOI: 10.1063/1.4971231

Feasibility of characterizing laser-ablated carbon plasmas via planar laser induced fluorescence
journal, October 2012

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4733562

A study of ablation by laser irradiation of plane targets at wavelengths 1.05, 0.53, and 0.35 μm
journal, January 1983


High repetition rate exploration of the Biermann battery effect in laser produced plasmas over large spatial regions
journal, January 2022

  • Pilgram, J. J.; Adams, M. B. P.; Constantin, C. G.
  • High Power Laser Science and Engineering, Vol. 10
  • DOI: 10.1017/hpl.2022.2

Fill tube dynamics in inertial confinement fusion implosions with high density carbon ablators
journal, November 2020

  • Baker, K. L.; Thomas, C. A.; Dittrich, T. R.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0011385

Recalling and Updating Research on Diamagnetic Cavities: Experiments, Theory, Simulations
journal, January 2019

  • Winske, Dan; Huba, Joseph D.; Niemann, Christoph
  • Frontiers in Astronomy and Space Sciences, Vol. 5
  • DOI: 10.3389/fspas.2018.00051

Experimental astrophysics with high power lasers and Z pinches
journal, August 2006

  • Remington, Bruce A.; Drake, R. Paul; Ryutov, Dmitri D.
  • Reviews of Modern Physics, Vol. 78, Issue 3
  • DOI: 10.1103/RevModPhys.78.755

Collisionless coupling of a high- β expansion to an ambient, magnetized plasma. II. Experimental fields and measured momentum coupling
journal, April 2018

  • Bonde, Jeffrey; Vincena, Stephen; Gekelman, Walter
  • Physics of Plasmas, Vol. 25, Issue 4
  • DOI: 10.1063/1.5029302

Direct Observations of Particle Dynamics in Magnetized Collisionless Shock Precursors in Laser-Produced Plasmas
journal, June 2019


A two photon absorption laser induced fluorescence diagnostic for fusion plasmas
journal, October 2012

  • Magee, R. M.; Galante, M. E.; McCarren, D.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4728092

Sub‐Alfvénic plasma expansion
journal, October 1993

  • Ripin, B. H.; Huba, J. D.; McLean, E. A.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 10
  • DOI: 10.1063/1.860825

Raster Thomson scattering in large-scale laser plasmas produced at high repetition rate
journal, September 2021

  • Kaloyan, M.; Ghazaryan, S.; Constantin, C. G.
  • Review of Scientific Instruments, Vol. 92, Issue 9
  • DOI: 10.1063/5.0059244

Dynamics of exploding plasmas in a large magnetized plasma
journal, January 2013

  • Niemann, C.; Gekelman, W.; Constantin, C. G.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4773911

A model of the pre-Sedov expansion phase of supernova remnant-ambient plasma coupling and X-ray emission from SN 1987A
journal, June 1990

  • Spicer, D. S.; Maran, S. P.; Clark, R. W.
  • The Astrophysical Journal, Vol. 356
  • DOI: 10.1086/168862

Observations of a field-aligned ion/ion-beam instability in a magnetized laboratory plasma
journal, March 2018

  • Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5017637

Particle and field measurements of the Starfish diamagnetic cavity
journal, January 2006


Electrostatic structure of a magnetized laser-produced plasma
journal, November 2015


A platform for high-repetition-rate laser experiments on the Large Plasma Device
journal, January 2018

  • Schaeffer, D. B.; Hofer, L. R.; Knall, E. N.
  • High Power Laser Science and Engineering, Vol. 6
  • DOI: 10.1017/hpl.2018.11

Measurements of ion velocity distributions in a large scale laser-produced plasma
journal, October 2020

  • Dorst, R. S.; Heuer, P. V.; Schaeffer, D. B.
  • Review of Scientific Instruments, Vol. 91, Issue 10
  • DOI: 10.1063/5.0013447

First Results from the Thomson Scattering Diagnostic on the Large Plasma Device
journal, April 2022


Large-Larmor-radius interchange instability
journal, November 1987


Collisionless momentum transfer in space and astrophysical explosions
journal, February 2017

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Nature Physics, Vol. 13, Issue 6
  • DOI: 10.1038/nphys4041

The upgraded Large Plasma Device, a machine for studying frontier basic plasma physics
journal, February 2016

  • Gekelman, W.; Pribyl, P.; Lucky, Z.
  • Review of Scientific Instruments, Vol. 87, Issue 2
  • DOI: 10.1063/1.4941079

High-energy Nd:glass laser facility for collisionless laboratory astrophysics
journal, March 2012


Structure of an Exploding Laser-Produced Plasma
journal, November 2010


Design, construction, and calibration of a three-axis, high-frequency magnetic probe (B-dot probe) as a diagnostic for exploding plasmas
journal, November 2009

  • Everson, E. T.; Pribyl, P.; Constantin, C. G.
  • Review of Scientific Instruments, Vol. 80, Issue 11
  • DOI: 10.1063/1.3246785

Astrophysical Explosions Revisited: Collisionless Coupling of Debris to Magnetized Plasma
journal, September 2021

  • Le, Ari; Winske, Dan; Stanier, Adam
  • Journal of Geophysical Research: Space Physics, Vol. 126, Issue 9
  • DOI: 10.1029/2021JA029125

Quantitative two-photon laser-induced fluorescence measurements of atomic hydrogen densities, temperatures, and velocities in an expanding thermal plasma
journal, January 2002

  • Boogaarts, M. G. H.; Mazouffre, S.; Brinkman, G. J.
  • Review of Scientific Instruments, Vol. 73, Issue 1
  • DOI: 10.1063/1.1425777

Long-Pulse Laser-Plasma Interactions at1012-1015W/cm2
journal, July 1979


Kinetic simulations of piston-driven collisionless shock formation in magnetized laboratory plasmas
journal, April 2020

  • Schaeffer, D. B.; Fox, W.; Matteucci, J.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/1.5123229

Characterization of laser-produced carbon plasmas relevant to laboratory astrophysics
journal, July 2016

  • Schaeffer, D. B.; Bondarenko, A. S.; Everson, E. T.
  • Journal of Applied Physics, Vol. 120, Issue 4
  • DOI: 10.1063/1.4959148

Characteristics of ablation plasma from planar, laser‐driven targets
journal, October 1981

  • Grun, J.; Decoste, R.; Ripin, B. H.
  • Applied Physics Letters, Vol. 39, Issue 7
  • DOI: 10.1063/1.92788

Laser-produced plasmas as drivers of laboratory collisionless quasi-parallel shocks
journal, April 2020

  • Heuer, P. V.; Weidl, M. S.; Dorst, R. S.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/1.5142396

Role of turbulence in the coupling of a magnetic pulse to a collisionless plasma
journal, January 1973


On the generation of magnetized collisionless shocks in the large plasma device
journal, April 2017

  • Schaeffer, D. B.; Winske, D.; Larson, D. J.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4978882

Laser produced plasma jets: Collimation and instability in strong transverse magnetic fields
journal, June 1989


Laser-driven, ion-scale magnetospheres in laboratory plasmas. I. Experimental platform and first results
journal, April 2022

  • Schaeffer, D. B.; Cruz, F. D.; Dorst, R. S.
  • Physics of Plasmas, Vol. 29, Issue 4
  • DOI: 10.1063/5.0084353

Theory of Laminar Collisionless Shocks
journal, November 1971


Dynamics of exploding plasmas in a magnetic field
journal, September 1991


Spectroscopic measurement of high-frequency electric fields in the interaction of explosive debris plasma with magnetized background plasma
journal, December 2014

  • Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.
  • Physics of Plasmas, Vol. 21, Issue 12
  • DOI: 10.1063/1.4904374