DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties in Mn1–xCoxNiGe

Abstract

The effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties of the Mn1–xCoxNiGe system have been investigated. Cobalt doping on the Mn site shifted the martensitic structural transition toward lower temperature until it was ultimately absent, leaving only a magnetic transition from a ferromagnetic (FM) to a paramagnetic (PM) state in the high-temperature hexagonal phase. Co-occurrence of the magnetic and structural transitions to form a first-order magnetostructural transition (MST) from the FM orthorhombic to the PM hexagonal phase was observed in samples with 0.05 < x < 0.20. An additional antiferromagnetic–ferromagnetic-like transition was observed in the martensite phase for 0.05 < x < 0.10, which gradually vanished with increasing Co concentration (x > 0.10) or magnetic field (H > 0.5 T). The application of external hydrostatic pressure shifted the structural transition to lower temperature until an MST was formed in samples with x = 0.03 and 0.05, inducing large magnetic entropy changes up to –80.3 J kg–1 K–1 (x = 0.03) for a 7-T field change under 10.6-kbar pressure. Similar to the effects of the application of hydrostatic pressure, an MST was formed near room temperature in the sample with x = 0.03 bymore » annealing at high temperature (1200 °C) followed by quenching, resulting in a large magnetic entropy change of –56.2 J kg–1 K–1. Furthermore, these experimental results show that the application of pressure and thermal quenching, in addition to compositional variations, are effective methods to create magnetostructural transitions in the MnNiGe system, resulting in large magnetocaloric effects.« less

Authors:
ORCiD logo [1]; ORCiD logo [1];  [1];  [1];  [2];  [2];  [2];  [1]
  1. Louisiana State University, Baton Rouge, LA (United States)
  2. Southern Illinois University, Carbondale, IL (United States)
Publication Date:
Research Org.:
Louisiana State Univ., Baton Rouge, LA (United States); Southern Illinois Univ., Carbondale, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1975225
Alternate Identifier(s):
OSTI ID: 1878255
Grant/Contract Number:  
FG02-13ER46946; SC0010521
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 132; Journal Issue: 4; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; magnetocaloric; barocaloric; magnetic refrigeration; phase transitions; magnetism; alloys; materials heat treatment

Citation Formats

Chhetri, Tej Poudel, Chen, Jing-Han, Grant, Anthony T., Young, David P., Dubenko, Igor, Talapatra, Saikat, Ali, Naushad, and Stadler, Shane. Effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties in Mn1–xCoxNiGe. United States: N. p., 2022. Web. doi:10.1063/5.0100987.
Chhetri, Tej Poudel, Chen, Jing-Han, Grant, Anthony T., Young, David P., Dubenko, Igor, Talapatra, Saikat, Ali, Naushad, & Stadler, Shane. Effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties in Mn1–xCoxNiGe. United States. https://doi.org/10.1063/5.0100987
Chhetri, Tej Poudel, Chen, Jing-Han, Grant, Anthony T., Young, David P., Dubenko, Igor, Talapatra, Saikat, Ali, Naushad, and Stadler, Shane. Wed . "Effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties in Mn1–xCoxNiGe". United States. https://doi.org/10.1063/5.0100987. https://www.osti.gov/servlets/purl/1975225.
@article{osti_1975225,
title = {Effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties in Mn1–xCoxNiGe},
author = {Chhetri, Tej Poudel and Chen, Jing-Han and Grant, Anthony T. and Young, David P. and Dubenko, Igor and Talapatra, Saikat and Ali, Naushad and Stadler, Shane},
abstractNote = {The effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties of the Mn1–xCoxNiGe system have been investigated. Cobalt doping on the Mn site shifted the martensitic structural transition toward lower temperature until it was ultimately absent, leaving only a magnetic transition from a ferromagnetic (FM) to a paramagnetic (PM) state in the high-temperature hexagonal phase. Co-occurrence of the magnetic and structural transitions to form a first-order magnetostructural transition (MST) from the FM orthorhombic to the PM hexagonal phase was observed in samples with 0.05 < x < 0.20. An additional antiferromagnetic–ferromagnetic-like transition was observed in the martensite phase for 0.05 < x < 0.10, which gradually vanished with increasing Co concentration (x > 0.10) or magnetic field (H > 0.5 T). The application of external hydrostatic pressure shifted the structural transition to lower temperature until an MST was formed in samples with x = 0.03 and 0.05, inducing large magnetic entropy changes up to –80.3 J kg–1 K–1 (x = 0.03) for a 7-T field change under 10.6-kbar pressure. Similar to the effects of the application of hydrostatic pressure, an MST was formed near room temperature in the sample with x = 0.03 by annealing at high temperature (1200 °C) followed by quenching, resulting in a large magnetic entropy change of –56.2 J kg–1 K–1. Furthermore, these experimental results show that the application of pressure and thermal quenching, in addition to compositional variations, are effective methods to create magnetostructural transitions in the MnNiGe system, resulting in large magnetocaloric effects.},
doi = {10.1063/5.0100987},
journal = {Journal of Applied Physics},
number = 4,
volume = 132,
place = {United States},
year = {Wed Jul 27 00:00:00 EDT 2022},
month = {Wed Jul 27 00:00:00 EDT 2022}
}

Works referenced in this record:

Giant magnetocaloric effect of MnAs1−xSbx
journal, November 2001

  • Wada, H.; Tanabe, Y.
  • Applied Physics Letters, Vol. 79, Issue 20
  • DOI: 10.1063/1.1419048

Giant barocaloric effect in hexagonal Ni2In-type Mn-Co-Ge-In compounds around room temperature
journal, December 2015

  • Wu, Rong-Rong; Bao, Li-Fu; Hu, Feng-Xia
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep18027

Giant magnetocaloric effect driven by structural transitions
journal, May 2012

  • Liu, Jian; Gottschall, Tino; Skokov, Konstantin P.
  • Nature Materials, Vol. 11, Issue 7
  • DOI: 10.1038/nmat3334

Giant magnetocaloric effects by tailoring the phase transitions
journal, April 2010

  • Trung, N. T.; Zhang, L.; Caron, L.
  • Applied Physics Letters, Vol. 96, Issue 17
  • DOI: 10.1063/1.3399773

Large negative magnetoresistance in a ferromagnetic shape memory alloy: Ni2+xMn1−xGa
journal, May 2005

  • Biswas, C.; Rawat, R.; Barman, S. R.
  • Applied Physics Letters, Vol. 86, Issue 20
  • DOI: 10.1063/1.1925757

Transition-metal-based magnetic refrigerants for room-temperature applications
journal, January 2002

  • Tegus, O.; Brück, E.; Buschow, K. H. J.
  • Nature, Vol. 415, Issue 6868
  • DOI: 10.1038/415150a

Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window
journal, March 2013

  • Liu, E. K.; Zhang, H. G.; Xu, G. Z.
  • Applied Physics Letters, Vol. 102, Issue 12
  • DOI: 10.1063/1.4798318

Tuning martensitic transitions in (MnNiSi) 0.65 (Fe 2 Ge) 0.35 through heat treatment and hydrostatic pressure
journal, November 2018

  • Chen, Jing-Han; Us Saleheen, Ahmad; Karna, Sunil K.
  • Journal of Applied Physics, Vol. 124, Issue 20
  • DOI: 10.1063/1.5051551

Inverse magnetocaloric effect in ferromagnetic Ni50Mn37+xSb13−x Heusler alloys
journal, March 2007

  • Khan, Mahmud; Ali, Naushad; Stadler, Shane
  • Journal of Applied Physics, Vol. 101, Issue 5
  • DOI: 10.1063/1.2710779

The influence of hydrostatic pressure and annealing conditions on the magnetostructural transitions in MnCoGe
journal, June 2021

  • Chen, Jing-Han; Poudel Chhetri, Tej; Chang, Chung-Kai
  • Journal of Applied Physics, Vol. 129, Issue 21
  • DOI: 10.1063/5.0053671

Effects of heat treatments on magneto-structural phase transitions in MnNiSi-FeCoGe alloys
journal, September 2019


Large magnetic‐field‐induced strains in Ni 2 MnGa single crystals
journal, September 1996

  • Ullakko, K.; Huang, J. K.; Kantner, C.
  • Applied Physics Letters, Vol. 69, Issue 13
  • DOI: 10.1063/1.117637

Crystal and magnetic structure of CoxNi1-xMnGe system
journal, June 1982


On the crystal structure and magnetic properties of MnNiGe
journal, July 1985


Magnetostrictive and magnetocaloric effects in Mn 0.89 Cr 0.11 NiGe
journal, December 2013

  • Sivachenko, A. P.; Mityuk, V. I.; Kamenev, V. I.
  • Low Temperature Physics, Vol. 39, Issue 12
  • DOI: 10.1063/1.4843196

Giant magnetocaloric effects near room temperature in Mn 1 − x Cu x CoGe
journal, December 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 101, Issue 24
  • DOI: 10.1063/1.4770379

Designed materials with the giant magnetocaloric effect near room temperature
journal, November 2019


Taming the First-Order Transition in Giant Magnetocaloric Materials
journal, February 2014

  • Guillou, François; Porcari, Giacomo; Yibole, Hargen
  • Advanced Materials, Vol. 26, Issue 17
  • DOI: 10.1002/adma.201304788

Crystal and magnetic structure of NiMnGe
journal, December 1976

  • Bazela, W.; Szytuła, A.; Todorović, J.
  • Physica Status Solidi (a), Vol. 38, Issue 2
  • DOI: 10.1002/pssa.2210380235

Magnetic and martensitic transformations of NiMnX(X=In,Sn,Sb) ferromagnetic shape memory alloys
journal, January 2004

  • Sutou, Y.; Imano, Y.; Koeda, N.
  • Applied Physics Letters, Vol. 85, Issue 19
  • DOI: 10.1063/1.1808879

Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn–Ni–Ge system
journal, October 2017

  • Taubel, Andreas; Gottschall, Tino; Fries, Maximilian
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 46
  • DOI: 10.1088/1361-6463/aa8e89

On the determination of the magnetic entropy change in materials with first-order transitions
journal, November 2009

  • Caron, L.; Ou, Z. Q.; Nguyen, T. T.
  • Journal of Magnetism and Magnetic Materials, Vol. 321, Issue 21
  • DOI: 10.1016/j.jmmm.2009.06.086

The magnetostructural transformation and magnetocaloric effect in Co-doped MnNiGe 1.05 alloys
journal, May 2010


La(Fe,Si)13-based magnetic refrigerants obtained by novel processing routes
journal, September 2008

  • Lyubina, Julia; Gutfleisch, Oliver; Kuz’min, Michael D.
  • Journal of Magnetism and Magnetic Materials, Vol. 320, Issue 18
  • DOI: 10.1016/j.jmmm.2008.04.116

A coupling of martensitic and metamagnetic transitions with collective magneto-volume and table-like magnetocaloric effects
journal, August 2014

  • Liu, E. K.; Wei, Z. Y.; Li, Y.
  • Applied Physics Letters, Vol. 105, Issue 6
  • DOI: 10.1063/1.4892167

Magnetostructural transformation and magnetocaloric effect in MnNiGe 1-x Ga x alloys
journal, October 2013

  • Zhang, C. L.; Han, Z. D.; Qian, B.
  • Journal of Applied Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.4826216

EXPGUI , a graphical user interface for GSAS
journal, April 2001


Large reversible magnetocaloric effect in Ni-Mn-In-Co
journal, January 2015

  • Gottschall, Tino; Skokov, Konstantin P.; Frincu, Bianca
  • Applied Physics Letters, Vol. 106, Issue 2
  • DOI: 10.1063/1.4905371

Magnetic properties of the CoxNi1−xMnGe system
journal, September 1981


Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6
journal, June 2001

  • Hu, Feng-xia; Shen, Bao-gen; Sun, Ji-rong
  • Applied Physics Letters, Vol. 78, Issue 23
  • DOI: 10.1063/1.1375836

The influence of Au substitution and hydrostatic pressure on the phase transitions and magnetocaloric properties of MnCoGe alloys
journal, June 2020

  • Chen, Jing-Han; Trigg, Aaron; Poudel Chhetri, Tej
  • Journal of Applied Physics, Vol. 127, Issue 21
  • DOI: 10.1063/5.0007172

Magnetostructural phase transition and magnetocaloric effect in off-stoichiometric Mn1.9−xNixGe alloys
journal, September 2008

  • Zhang, C. L.; Wang, D. H.; Cao, Q. Q.
  • Applied Physics Letters, Vol. 93, Issue 12
  • DOI: 10.1063/1.2990649

Phase diagram and magnetocaloric effects in aluminum doped MnNiGe alloys
journal, October 2013

  • Quetz, Abdiel; Samanta, Tapas; Dubenko, Igor
  • Journal of Applied Physics, Vol. 114, Issue 15
  • DOI: 10.1063/1.4826260

Heat treatment effect on the magnetic properties and martensitic transformations of MnCoGe
journal, April 2020

  • Noguchi, Kohei; Kobayashi, Ryota; Mitsui, Yoshifuru
  • Journal of Magnetism and Magnetic Materials, Vol. 499
  • DOI: 10.1016/j.jmmm.2019.166199

Giant Magnetocaloric Effect in Gd5(Si2Ge2)
journal, June 1997


Magnetic superelasticity and inverse magnetocaloric effect in Ni-Mn-In
journal, March 2007


Magnetocaloric effect in Ni-Mn-X (X = Ga, In, Sn, Sb) Heusler alloys
journal, December 2011

  • Buchelnikov, V. D.; Sokolovskiy, V. V.
  • The Physics of Metals and Metallography, Vol. 112, Issue 7
  • DOI: 10.1134/S0031918X11070052

Magnetocaloric properties of Ni2Mn1−xCuxGa
journal, May 2006

  • Stadler, Shane; Khan, Mahmud; Mitchell, Joseph
  • Applied Physics Letters, Vol. 88, Issue 19
  • DOI: 10.1063/1.2202751

Coupled nature of magnetic and structural transition in MnNiGe under pressure
journal, September 1978


Large magnetoresistance in single-crystalline Ni50Mn50−xInx alloys (x=14–16) upon martensitic transformation
journal, October 2006

  • Yu, S. Y.; Liu, Z. H.; Liu, G. D.
  • Applied Physics Letters, Vol. 89, Issue 16
  • DOI: 10.1063/1.2362581

Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets
journal, January 2012

  • Liu, Enke; Wang, Wenhong; Feng, Lin
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms1868

Large magnetic entropy change in Ni50Mn50−xInx Heusler alloys
journal, June 2007

  • Pathak, Arjun Kumar; Khan, Mahmud; Dubenko, Igor
  • Applied Physics Letters, Vol. 90, Issue 26
  • DOI: 10.1063/1.2752720

A profile refinement method for nuclear and magnetic structures
journal, June 1969


Giant low field magnetocaloric effect near room temperature in isostructurally alloyed MnNiGe-FeCoGe systems
journal, July 2020


On entropy determination from magnetic and calorimetric experiments in conventional giant magnetocaloric materials
journal, April 2018

  • Chen, Jing-Han; Us Saleheen, Ahmad; Adams, Philip W.
  • Journal of Applied Physics, Vol. 123, Issue 14
  • DOI: 10.1063/1.5016858

Magnetic-field-induced shape recovery by reverse phase transformation
journal, February 2006


Diffusionless orthorhombic to hexagonal transitions in ternary silicides and germanides
journal, May 1975


Magnetostructural phase transitions and magnetocaloric effects in MnNiGe 1−x Al x
journal, January 2012

  • Samanta, Tapas; Dubenko, Igor; Quetz, Abdiel
  • Applied Physics Letters, Vol. 100, Issue 5
  • DOI: 10.1063/1.3681798

Tuning magnetostructural transition and the associated giant magnetocaloric effect via thermal treatment in MnCoGe-based alloys
journal, January 2019