DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons

Abstract

Abstract The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integrationmore » of GNRs.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1] more »; ORCiD logo [1]; ORCiD logo [6]; ORCiD logo [1]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [5]; ORCiD logo [3]; ORCiD logo [9]; ORCiD logo [1] « less
  1. Empa Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland
  2. State Key Laboratory of Elemento‐Organic Chemistry College of Chemistry Nankai University Tianjin 300071 China
  3. Department of Electrical Engineering and Computer Sciences University of California Berkeley CA 94720 USA
  4. Institute of Theoretical Physics University of Regensburg D‐93053 Regensburg Germany
  5. Department of Physics Applied Physics and Astronomy Rensselaer Polytechnic Institute Troy NY 12180 USA
  6. Center for Advancing Electronics Dresden Department of Chemistry and Food Chemistry TU Dresden 01062 Dresden Germany
  7. Max Planck Institute for Polymer Research 55128 Mainz Germany, Department of Chemistry Johannes Gutenberg‐Universität Mainz 55128 Mainz Germany
  8. Max Planck Institute for Polymer Research 55128 Mainz Germany, Organic and Carbon Nanomaterials Unit Okinawa Institute of Science and Technology Graduate University 1919‐1 Tancha Onna‐son Okinawa 904‐0495 Japan
  9. Empa Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland, Department of Chemistry Biochemistry and Pharmaceutical Sciences University of Bern Bern 3012 Switzerland
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). Molecular Foundry
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1872797
Alternate Identifier(s):
OSTI ID: 1872798; OSTI ID: 1981444
Grant/Contract Number:  
DE‐AC02‐05CH11231; AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 18 Journal Issue: 31; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE; field-effect transistors; graphene nanoribbons; on-surface synthesis; Raman spectroscopy; scanning tunneling microscopy; temperature-programmed x-ray photoelectron spectroscopy

Citation Formats

Borin Barin, Gabriela, Sun, Qiang, Di Giovannantonio, Marco, Du, Cheng‐Zhuo, Wang, Xiao‐Ye, Llinas, Juan Pablo, Mutlu, Zafer, Lin, Yuxuan, Wilhelm, Jan, Overbeck, Jan, Daniels, Colin, Lamparski, Michael, Sahabudeen, Hafeesudeen, Perrin, Mickael L., Urgel, José I., Mishra, Shantanu, Kinikar, Amogh, Widmer, Roland, Stolz, Samuel, Bommert, Max, Pignedoli, Carlo, Feng, Xinliang, Calame, Michel, Müllen, Klaus, Narita, Akimitsu, Meunier, Vincent, Bokor, Jeffrey, Fasel, Roman, and Ruffieux, Pascal. Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons. Germany: N. p., 2022. Web. doi:10.1002/smll.202202301.
Borin Barin, Gabriela, Sun, Qiang, Di Giovannantonio, Marco, Du, Cheng‐Zhuo, Wang, Xiao‐Ye, Llinas, Juan Pablo, Mutlu, Zafer, Lin, Yuxuan, Wilhelm, Jan, Overbeck, Jan, Daniels, Colin, Lamparski, Michael, Sahabudeen, Hafeesudeen, Perrin, Mickael L., Urgel, José I., Mishra, Shantanu, Kinikar, Amogh, Widmer, Roland, Stolz, Samuel, Bommert, Max, Pignedoli, Carlo, Feng, Xinliang, Calame, Michel, Müllen, Klaus, Narita, Akimitsu, Meunier, Vincent, Bokor, Jeffrey, Fasel, Roman, & Ruffieux, Pascal. Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons. Germany. https://doi.org/10.1002/smll.202202301
Borin Barin, Gabriela, Sun, Qiang, Di Giovannantonio, Marco, Du, Cheng‐Zhuo, Wang, Xiao‐Ye, Llinas, Juan Pablo, Mutlu, Zafer, Lin, Yuxuan, Wilhelm, Jan, Overbeck, Jan, Daniels, Colin, Lamparski, Michael, Sahabudeen, Hafeesudeen, Perrin, Mickael L., Urgel, José I., Mishra, Shantanu, Kinikar, Amogh, Widmer, Roland, Stolz, Samuel, Bommert, Max, Pignedoli, Carlo, Feng, Xinliang, Calame, Michel, Müllen, Klaus, Narita, Akimitsu, Meunier, Vincent, Bokor, Jeffrey, Fasel, Roman, and Ruffieux, Pascal. Fri . "Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons". Germany. https://doi.org/10.1002/smll.202202301.
@article{osti_1872797,
title = {Growth Optimization and Device Integration of Narrow‐Bandgap Graphene Nanoribbons},
author = {Borin Barin, Gabriela and Sun, Qiang and Di Giovannantonio, Marco and Du, Cheng‐Zhuo and Wang, Xiao‐Ye and Llinas, Juan Pablo and Mutlu, Zafer and Lin, Yuxuan and Wilhelm, Jan and Overbeck, Jan and Daniels, Colin and Lamparski, Michael and Sahabudeen, Hafeesudeen and Perrin, Mickael L. and Urgel, José I. and Mishra, Shantanu and Kinikar, Amogh and Widmer, Roland and Stolz, Samuel and Bommert, Max and Pignedoli, Carlo and Feng, Xinliang and Calame, Michel and Müllen, Klaus and Narita, Akimitsu and Meunier, Vincent and Bokor, Jeffrey and Fasel, Roman and Ruffieux, Pascal},
abstractNote = {Abstract The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom‐up fabrication based on molecular precursors. This approach offers a unique platform for all‐carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5‐atom wide armchair GNRs (5‐AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5‐AGNRs are obtained via on‐surface synthesis under ultrahigh vacuum conditions from Br‐ and I‐substituted precursors. It is shown that the use of I‐substituted precursors and the optimization of the initial precursor coverage quintupled the average 5‐AGNR length. This significant length increase allowed the integration of 5‐AGNRs into devices and the realization of the first field‐effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub‐nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.},
doi = {10.1002/smll.202202301},
journal = {Small},
number = 31,
volume = 18,
place = {Germany},
year = {Fri Jun 17 00:00:00 EDT 2022},
month = {Fri Jun 17 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.202202301

Save / Share:

Works referenced in this record:

On-surface synthesis of polyazulene with 2,6-connectivity
journal, January 2019

  • Sun, Qiang; Hou, Ian Cheng-Yi; Eimre, Kristjan
  • Chemical Communications, Vol. 55, Issue 89
  • DOI: 10.1039/C9CC07168G

Optimized Substrates and Measurement Approaches for Raman Spectroscopy of Graphene Nanoribbons
journal, November 2019

  • Overbeck, Jan; Borin Barin, Gabriela; Daniels, Colin
  • physica status solidi (b), Vol. 256, Issue 12
  • DOI: 10.1002/pssb.201900343

Mechanisms of Halogen-Based Covalent Self-Assembly on Metal Surfaces
journal, April 2013

  • Björk, Jonas; Hanke, Felix; Stafström, Sven
  • Journal of the American Chemical Society, Vol. 135, Issue 15
  • DOI: 10.1021/ja400304b

On-Surface Synthesis of Atomically Precise Graphene Nanoribbons
journal, February 2016

  • Talirz, Leopold; Ruffieux, Pascal; Fasel, Roman
  • Advanced Materials, Vol. 28, Issue 29
  • DOI: 10.1002/adma.201505738

Tuning the Band Gap of Graphene Nanoribbons Synthesized from Molecular Precursors
journal, June 2013

  • Chen, Yen-Chia; de Oteyza, Dimas G.; Pedramrazi, Zahra
  • ACS Nano, Vol. 7, Issue 7
  • DOI: 10.1021/nn401948e

Transfer-Free Synthesis of Atomically Precise Graphene Nanoribbons on Insulating Substrates
journal, January 2021


On-Surface Synthesis of Rylene-Type Graphene Nanoribbons
journal, March 2015

  • Zhang, Haiming; Lin, Haiping; Sun, Kewei
  • Journal of the American Chemical Society, Vol. 137, Issue 12
  • DOI: 10.1021/ja511995r

Bottom-up graphene nanoribbon field-effect transistors
journal, December 2013

  • Bennett, Patrick B.; Pedramrazi, Zahra; Madani, Ali
  • Applied Physics Letters, Vol. 103, Issue 25
  • DOI: 10.1063/1.4855116

Ultra-narrow metallic armchair graphene nanoribbons
journal, December 2015

  • Kimouche, Amina; Ervasti, Mikko M.; Drost, Robert
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10177

Order from a Mess: The Growth of 5-Armchair Graphene Nanoribbons
journal, October 2021

  • Berdonces-Layunta, Alejandro; Schulz, Fabian; Aguilar-Galindo, Fernando
  • ACS Nano, Vol. 15, Issue 10
  • DOI: 10.1021/acsnano.1c06226

Quasiparticle Energies and Band Gaps in Graphene Nanoribbons
journal, November 2007


Mechanistic Picture and Kinetic Analysis of Surface-Confined Ullmann Polymerization
journal, December 2016

  • Di Giovannantonio, Marco; Tomellini, Massimo; Lipton-Duffin, Josh
  • Journal of the American Chemical Society, Vol. 138, Issue 51
  • DOI: 10.1021/jacs.6b09728

On-Surface Growth Dynamics of Graphene Nanoribbons: The Role of Halogen Functionalization
journal, December 2017


Surface-Synthesized Graphene Nanoribbons for Room Temperature Switching Devices: Substrate Transfer and ex Situ Characterization
journal, March 2019

  • Borin Barin, Gabriela; Fairbrother, Andrew; Rotach, Lukas
  • ACS Applied Nano Materials, Vol. 2, Issue 4
  • DOI: 10.1021/acsanm.9b00151

Spatially Resolved Electronic Structures of Atomically Precise Armchair Graphene Nanoribbons
journal, December 2012

  • Huang, Han; Wei, Dacheng; Sun, Jiatao
  • Scientific Reports, Vol. 2, Issue 1
  • DOI: 10.1038/srep00983

Bond Dissociation Energies of Organic Molecules
journal, April 2003

  • Blanksby, Stephen J.; Ellison, G. Barney
  • Accounts of Chemical Research, Vol. 36, Issue 4
  • DOI: 10.1021/ar020230d

Revealing the Electronic Structure of Silicon Intercalated Armchair Graphene Nanoribbons by Scanning Tunneling Spectroscopy
journal, March 2017


On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons
journal, February 2017


Perspectives on Carbon Nanotubes and Graphene Raman Spectroscopy
journal, March 2010

  • Dresselhaus, Mildred S.; Jorio, Ado; Hofmann, Mario
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl904286r

Topological band engineering of graphene nanoribbons
journal, August 2018


A library of ab initio Raman spectra for automated identification of 2D materials
journal, June 2020

  • Taghizadeh, Alireza; Leffers, Ulrik; Pedersen, Thomas G.
  • Nature Communications, Vol. 11, Issue 1
  • DOI: 10.1038/s41467-020-16529-6

Tracking and Removing Br during the On-Surface Synthesis of a Graphene Nanoribbon
journal, December 2014

  • Bronner, Christopher; Björk, Jonas; Tegeder, Petra
  • The Journal of Physical Chemistry C, Vol. 119, Issue 1
  • DOI: 10.1021/jp5106218

Graphene nanoribbons with mixed cove-cape-zigzag edge structure
journal, April 2021


Optimized graphene electrodes for contacting graphene nanoribbons
journal, October 2021


Graphene Nanoribbons: On‐Surface Synthesis and Integration into Electronic Devices
journal, September 2020

  • Chen, Zongping; Narita, Akimitsu; Müllen, Klaus
  • Advanced Materials, Vol. 32, Issue 45
  • DOI: 10.1002/adma.202001893

On-surface synthesis of graphene nanoribbons with zigzag edge topology
journal, March 2016

  • Ruffieux, Pascal; Wang, Shiyong; Yang, Bo
  • Nature, Vol. 531, Issue 7595
  • DOI: 10.1038/nature17151

The role of halogens in on-surface Ullmann polymerization
journal, January 2017

  • Galeotti, Gianluca; Di Giovannantonio, Marco; Lipton-Duffin, Josh
  • Faraday Discussions, Vol. 204
  • DOI: 10.1039/C7FD00099E

Localized atomic basis set in the projector augmented wave method
journal, November 2009


Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons
journal, September 2017

  • Llinas, Juan Pablo; Fairbrother, Andrew; Borin Barin, Gabriela
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-00734-x

Low-Scaling GW with Benchmark Accuracy and Application to Phosphorene Nanosheets
journal, February 2021

  • Wilhelm, Jan; Seewald, Patrick; Golze, Dorothea
  • Journal of Chemical Theory and Computation, Vol. 17, Issue 3
  • DOI: 10.1021/acs.jctc.0c01282

Surface-confined [2 + 2] cycloaddition towards one-dimensional polymers featuring cyclobutadiene units
journal, January 2017

  • Tran, Bay V.; Pham, Tuan Anh; Grunst, Michael
  • Nanoscale, Vol. 9, Issue 46
  • DOI: 10.1039/C7NR06187K

High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons
journal, January 2017

  • Fairbrother, Andrew; Sanchez-Valencia, Juan-Ramon; Lauber, Beat
  • Nanoscale, Vol. 9, Issue 8
  • DOI: 10.1039/C6NR08975E

Vibrational properties of graphene nanoribbons by first-principles calculations
journal, October 2009


Atomically precise bottom-up fabrication of graphene nanoribbons
journal, July 2010

  • Cai, Jinming; Ruffieux, Pascal; Jaafar, Rached
  • Nature, Vol. 466, Issue 7305
  • DOI: 10.1038/nature09211

Magnetic edge states and coherent manipulation of graphene nanoribbons
journal, May 2018


Materials Science Challenges to Graphene Nanoribbon Electronics
journal, March 2021

  • Saraswat, Vivek; Jacobberger, Robert M.; Arnold, Michael S.
  • ACS Nano, Vol. 15, Issue 3
  • DOI: 10.1021/acsnano.0c07835

Controlled Quantum Dot Formation in Atomically Engineered Graphene Nanoribbon Field-Effect Transistors
journal, March 2020

  • El Abbassi, Maria; Perrin, Mickael L.; Barin, Gabriela Borin
  • ACS Nano, Vol. 14, Issue 5
  • DOI: 10.1021/acsnano.0c00604

Production and processing of graphene and related materials
journal, January 2020


Overtone and combination features of G and D peaks in resonance Raman spectroscopy of the C 78 H 26 polycyclic aromatic hydrocarbon : Raman spectra of C
journal, June 2015

  • Maghsoumi, A.; Brambilla, L.; Castiglioni, C.
  • Journal of Raman Spectroscopy, Vol. 46, Issue 9
  • DOI: 10.1002/jrs.4717

On‐Surface Synthesis of Cumulene‐Containing Polymers via Two‐Step Dehalogenative Homocoupling of Dibromomethylene‐Functionalized Tribenzoazulene
journal, May 2020

  • Urgel, José I.; Di Giovannantonio, Marco; Eimre, Kristjan
  • Angewandte Chemie, Vol. 132, Issue 32
  • DOI: 10.1002/ange.202001939

An unexpected organometallic intermediate in surface-confined Ullmann coupling
journal, January 2019

  • Galeotti, Gianluca; Di Giovannantonio, Marco; Cupo, Andrew
  • Nanoscale, Vol. 11, Issue 16
  • DOI: 10.1039/C9NR00672A

From Graphene Nanoribbons on Cu(111) to Nanographene on Cu(110): Critical Role of Substrate Structure in the Bottom-Up Fabrication Strategy
journal, August 2015

  • Simonov, Konstantin A.; Vinogradov, Nikolay A.; Vinogradov, Alexander S.
  • ACS Nano, Vol. 9, Issue 9
  • DOI: 10.1021/acsnano.5b03280

A Universal Length-Dependent Vibrational Mode in Graphene Nanoribbons
journal, October 2019


Engineering of robust topological quantum phases in graphene nanoribbons
journal, August 2018


The Role of Kinetics versus Thermodynamics in Surface-Assisted Ullmann Coupling on Gold and Silver Surfaces
journal, February 2019

  • Fritton, Massimo; Duncan, David A.; Deimel, Peter S.
  • Journal of the American Chemical Society, Vol. 141, Issue 12
  • DOI: 10.1021/jacs.8b11473

Structure-dependent electrical properties of graphene nanoribbon devices with graphene electrodes
journal, May 2019


Reversible Dehalogenation in On‐Surface Aryl–Aryl Coupling
journal, May 2020

  • Stolz, Samuel; Di Giovannantonio, Marco; Urgel, José I.
  • Angewandte Chemie International Edition, Vol. 59, Issue 33
  • DOI: 10.1002/anie.202005443

Raman spectra of graphene ribbons
journal, August 2010


Kohn Anomalies and Electron-Phonon Interactions in Graphite
journal, October 2004