skip to main content

DOE PAGESDOE PAGES

5 results for: All records
Author ORCID ID is 000000027013179X
Full Text and Citations
Filters
  1. Typical structures of two-electrode devices in 2D junction and the corresponding transmission coefficients with the function of bilayer length.
  2. Electronic and thermal properties of chevron-type graphene nanoribbons can be widely tuned, making them interesting candidates for electronic and thermoelectric applications. In this paper, we use post-growth silicon intercalation to unambiguously access nanoribbons’ energy position of their electronic frontier states. These are otherwise obscured by substrate effects when investigated directly on the growth substrate. Finally, in agreement with first-principles calculations we find a band gap of 2.4 eV.
    Cited by 1
  3. A simple model is developed to reveal the stacking dependence of Raman intensities of interlayer vibrations in 2D materials.
    Cited by 4
  4. Ever since the isolation of single-layer graphene in 2004, two-dimensional layered structures have been among the most extensively studied classes of materials. To date, the pool of two-dimensional materials (2DMs) continues to grow at an accelerated pace and already covers an extensive range of fascinating and technologically relevant properties. An array of experimental techniques have been developed and used to fully characterize and understand these properties. In particular, Raman spectroscopy has proven to be a key experimental technique, thanks to its capability to identify minute structural and electronic effects in nondestructive measurements. While high-frequency (HF) intralayer Raman modes have beenmore » extensively employed for 2DMs, recent experimental and theoretical progress has demonstrated that low-frequency (LF) interlayer Raman modes are more effective at determining layer numbers and stacking configurations, and provide a unique opportunity to study interlayer coupling. These advantages are due to 2DMs’ unique interlayer vibration patterns where each layer behaves as an almost rigidly moving object with restoring forces corresponding to weak interlayer interactions. Compared to HF Raman modes, the relatively small attention originally devoted to LF Raman modes is largely due to their weaker signal and their proximity to the strong Rayleigh line background, which previously made their detection challenging. Recent progress in Raman spectroscopy with technical and hardware upgrades now makes it possible to probe LF modes with a standard single-stage Raman system and has proven crucial to characterize and understand properties of 2DMs. Here, we present a comprehensive and forward-looking review on the current status of exploiting LF Raman modes of 2DMs from both experimental and theoretical perspectives, revealing the fundamental physics and technological significance of LF Raman modes in advancing the field of 2DMs. We review a broad array of materials, with varying thickness and stacking configurations, discuss the effect of in-plane anisotropy, and present a generalized linear chain model and interlayer bond polarizability model to rationalize the experimental findings. We also discuss the instrumental improvements of Raman spectroscopy to enhance and separate LF Raman signals from the Rayleigh line. Lastly, we highlight the opportunities and challenges ahead in this fast-developing field.« less
    Cited by 6
  5. When layered transition-metal dichalcogenides (TMDs) are scaled down from a three- to a two-dimensional geometry, electronic and structural transitions occur, leading to the emergence of properties not usually found in the bulk. Here, we report a systematic Raman study of exfoliated semi-metallic WTe 2 flakes with thickness ranging from few layers down to a single layer. A dramatic change in the Raman spectra occurs between the monolayer and few-layer WTe 2 as a vibrational mode centered at ~86.9 cm -1 in the monolayer splits into two active modes at 82.9 and 89.6 cm -1 in the bilayer. Davydov splitting ofmore » these two modes is found in the bilayer, as further evidenced by polarized Raman measurements. Strong angular dependence of Raman modes on the WTe 2 film thickness reflects that the existence of directional interlayer interaction, rather than isotropic van der Waals (vdw) coupling, is playing an essential role affecting the phonon modes, especially in anisotropic 2D WTe 2 material. Therefore, the strong evolution of Raman modes with thickness and polarization direction, can not only be a reliable fingerprint for the determination of the thickness and the crystallographic orientation, but can also be an ideal probe for such strong and directional interlayer interaction.« less

"Cited by" information provided by Web of Science.

DOE PAGES offers free public access to the best available full-text version of DOE-affiliated accepted manuscripts or articles after an administrative interval of 12 months. The portal and search engine employ a hybrid model of both centralized and distributed content, with PAGES maintaining a permanent archive of all full text and metadata.