DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure

Abstract

Abstract Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway toward achieving the QAH effect at a high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single‐septuple layers (1SL) of MnBi 2 Te 4 (a 2D ferromagnetic insulator) with ultrathin few quintuple layer (QL) Bi 2 Te 3 in the middle, and it is predicted to yield a robust QAH insulator phase with a large bandgap greater than 50 meV. Here, the growth of a 1SL MnBi 2 Te 4 /4QL Bi 2 Te 3 /1SL MnBi 2 Te 4 heterostructure via molecular beam epitaxy is demonstrated and the electronic structure probed using angle‐resolved photoelectron spectroscopy. Strong hexagonally warped massive Dirac fermions and a bandgap of 75 ± 15 meV are observed. The magnetic origin of the gap is confirmed by the observation of the exchange‐Rashba effect, as well as the vanishing bandgap above the Curie temperature, in agreement with density functional theory calculations. Thesemore » findings provide insights into magnetic proximity effects in topological insulators and reveal a promising platform for realizing the QAH effect at elevated temperatures.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [4];  [7]; ORCiD logo [2]
  1. School of Physics and Astronomy Monash University Clayton VIC 3800 Australia, ARC Centre for Future Low Energy Electronics Technologies Monash University Clayton VIC 3800 Australia, Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia
  2. School of Physics and Astronomy Monash University Clayton VIC 3800 Australia, ARC Centre for Future Low Energy Electronics Technologies Monash University Clayton VIC 3800 Australia
  3. Research Laboratory for Quantum Materials Singapore University of Technology and Design Singapore 487372 Singapore, Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
  4. Advanced Light Source Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
  5. Australian Nuclear Science and Technology Organization Lucas Heights NSW 2234 Australia, Institute for Superconductivity and Electronic Materials University of Wollongong Wollongong NSW 2522 Australia
  6. ARC Centre for Future Low Energy Electronics Technologies Monash University Clayton VIC 3800 Australia, Department of Materials Science and Engineering Monash University Clayton VIC 3800 Australia
  7. Research Laboratory for Quantum Materials Singapore University of Technology and Design Singapore 487372 Singapore
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; Australian Research Council (ARC); Singapore Ministry of Education
OSTI Identifier:
1860440
Alternate Identifier(s):
OSTI ID: 1860441; OSTI ID: 1884552
Grant/Contract Number:  
AC02-05CH11231; 180100314; MOE2019-T2-1-001; CE170100039
Resource Type:
Published Article
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 34 Journal Issue: 21; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
36 MATERIALS SCIENCE

Citation Formats

Li, Qile, Trang, Chi Xuan, Wu, Weikang, Hwang, Jinwoong, Cortie, David, Medhekar, Nikhil, Mo, Sung‐Kwan, Yang, Shengyuan A., and Edmonds, Mark T. Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure. Germany: N. p., 2022. Web. doi:10.1002/adma.202107520.
Li, Qile, Trang, Chi Xuan, Wu, Weikang, Hwang, Jinwoong, Cortie, David, Medhekar, Nikhil, Mo, Sung‐Kwan, Yang, Shengyuan A., & Edmonds, Mark T. Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure. Germany. https://doi.org/10.1002/adma.202107520
Li, Qile, Trang, Chi Xuan, Wu, Weikang, Hwang, Jinwoong, Cortie, David, Medhekar, Nikhil, Mo, Sung‐Kwan, Yang, Shengyuan A., and Edmonds, Mark T. Thu . "Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure". Germany. https://doi.org/10.1002/adma.202107520.
@article{osti_1860440,
title = {Large Magnetic Gap in a Designer Ferromagnet–Topological Insulator–Ferromagnet Heterostructure},
author = {Li, Qile and Trang, Chi Xuan and Wu, Weikang and Hwang, Jinwoong and Cortie, David and Medhekar, Nikhil and Mo, Sung‐Kwan and Yang, Shengyuan A. and Edmonds, Mark T.},
abstractNote = {Abstract Combining magnetism and nontrivial band topology gives rise to quantum anomalous Hall (QAH) insulators and exotic quantum phases such as the QAH effect where current flows without dissipation along quantized edge states. Inducing magnetic order in topological insulators via proximity to a magnetic material offers a promising pathway toward achieving the QAH effect at a high temperature for lossless transport applications. One promising architecture involves a sandwich structure comprising two single‐septuple layers (1SL) of MnBi 2 Te 4 (a 2D ferromagnetic insulator) with ultrathin few quintuple layer (QL) Bi 2 Te 3 in the middle, and it is predicted to yield a robust QAH insulator phase with a large bandgap greater than 50 meV. Here, the growth of a 1SL MnBi 2 Te 4 /4QL Bi 2 Te 3 /1SL MnBi 2 Te 4 heterostructure via molecular beam epitaxy is demonstrated and the electronic structure probed using angle‐resolved photoelectron spectroscopy. Strong hexagonally warped massive Dirac fermions and a bandgap of 75 ± 15 meV are observed. The magnetic origin of the gap is confirmed by the observation of the exchange‐Rashba effect, as well as the vanishing bandgap above the Curie temperature, in agreement with density functional theory calculations. These findings provide insights into magnetic proximity effects in topological insulators and reveal a promising platform for realizing the QAH effect at elevated temperatures.},
doi = {10.1002/adma.202107520},
journal = {Advanced Materials},
number = 21,
volume = 34,
place = {Germany},
year = {Thu Mar 31 00:00:00 EDT 2022},
month = {Thu Mar 31 00:00:00 EDT 2022}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.202107520

Save / Share:

Works referenced in this record:

Resonant Photovoltaic Effect in Doped Magnetic Semiconductors
journal, February 2020


Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator
journal, August 2010


Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Large-Gap Magnetic Topological Heterostructure Formed by Subsurface Incorporation of a Ferromagnetic Layer
journal, May 2017


Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
journal, April 2017


High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator
journal, March 2015

  • Chang, Cui-Zu; Zhao, Weiwei; Kim, Duk Y.
  • Nature Materials, Vol. 14, Issue 5
  • DOI: 10.1038/nmat4204

Projector augmented-wave method
journal, December 1994


Record High-Proximity-Induced Anomalous Hall Effect in (Bi x Sb 1– x ) 2 Te 3 Thin Film Grown on CrGeTe 3 Substrate
journal, June 2019


Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator
journal, March 2013


Magnetizing topological surface states of Bi 2 Se 3 with a CrI 3 monolayer
journal, May 2019


Structure-cell data and expansion coefficients of bismuth telluride
journal, October 1958


Recent Progress in Proximity Coupling of Magnetism to Topological Insulators
journal, June 2021

  • Bhattacharyya, Semonti; Akhgar, Golrokh; Gebert, Matthew
  • Advanced Materials, Vol. 33, Issue 33
  • DOI: 10.1002/adma.202007795

wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

Topological Insulator-Based van der Waals Heterostructures for Effective Control of Massless and Massive Dirac Fermions
journal, November 2018


Colloquium: Topological insulators
journal, November 2010


Experimental Realization of a Three-Dimensional Topological Insulator, Bi2Te3
journal, June 2009


Erratum: Experimental Realization of an Intrinsic Magnetic Topological Insulator [Chin. Phys. Lett. 36 (2019) 076801]
journal, August 2019


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
journal, May 1994


Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
journal, January 1998

  • Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.
  • Physical Review B, Vol. 57, Issue 3, p. 1505-1509
  • DOI: 10.1103/PhysRevB.57.1505

Maximally localized generalized Wannier functions for composite energy bands
journal, November 1997


Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure
journal, July 2017


Crossover from 2D Ferromagnetic Insulator to Wide Band Gap Quantum Anomalous Hall Insulator in Ultrathin MnBi 2 Te 4
journal, August 2021


Topological Insulators in Three Dimensions
journal, March 2007


Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi 2 Te 4
journal, January 2020


Intrinsic Topological Insulator Bi2Te3 Thin Films on Si and Their Thickness Limit
journal, July 2010


Spin Polarization and Transport of Surface States in the Topological Insulators Bi 2 Se 3 and Bi 2 Te 3 from First Principles
journal, December 2010


PyProcar: A Python library for electronic structure pre/post-processing
journal, June 2020


Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Cr x (Bi 0.1 Sb 0.9 ) 2-x Te 3
journal, January 2015

  • Lee, Inhee; Kim, Chung Koo; Lee, Jinho
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 5
  • DOI: 10.1073/pnas.1424322112

Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect
journal, November 2015

  • Mogi, M.; Yoshimi, R.; Tsukazaki, A.
  • Applied Physics Letters, Vol. 107, Issue 18
  • DOI: 10.1063/1.4935075

WannierTools: An open-source software package for novel topological materials
journal, March 2018


Strain-tunable magnetic anisotropy in monolayer CrCl 3 , CrBr 3 , and CrI 3
journal, October 2018


Hexagonal Warping Effects in the Surface States of the Topological Insulator Bi 2 Te 3
journal, December 2009


Topological Insulator Thin Films of Bi2Te3 with Controlled Electronic Structure
journal, May 2011


A high-temperature ferromagnetic topological insulating phase by proximity coupling
journal, May 2016

  • Katmis, Ferhat; Lauter, Valeria; Nogueira, Flavio S.
  • Nature, Vol. 533, Issue 7604
  • DOI: 10.1038/nature17635

Prediction and observation of an antiferromagnetic topological insulator
journal, December 2019


Quantum anomalous Hall effect driven by magnetic proximity coupling in all-telluride based heterostructure
journal, September 2019

  • Watanabe, R.; Yoshimi, R.; Kawamura, M.
  • Applied Physics Letters, Vol. 115, Issue 10
  • DOI: 10.1063/1.5111891

Magnetic anisotropy of the two-dimensional ferromagnetic insulator MnBi 2 Te 4
journal, October 2019


Unique Thickness-Dependent Properties of the van der Waals Interlayer Antiferromagnet MnBi 2 Te 4 Films
journal, March 2019


Highly-ordered wide bandgap materials for quantized anomalous Hall and magnetoelectric effects
journal, April 2017


A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

Maximally localized Wannier functions for entangled energy bands
journal, December 2001


Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures
journal, December 2019