DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition

Abstract

We report that one of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from ~0.1% in the as-grownmore » case to ~30% after treatment, with enhancement factors ranging from 100 to 1500× depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5–10%). Lastly, the discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.« less

Authors:
 [1];  [2];  [3];  [1];  [1];  [4];  [1];  [1];  [5];  [1];  [3];  [2];  [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Army Research Lab., Adelphi, MD (United States)
  3. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  4. Univ. of California, Berkeley, CA (United States)
  5. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Publication Date:
Research Org.:
Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22). Materials Sciences & Engineering Division
OSTI Identifier:
1557789
Grant/Contract Number:  
SC0001088; AC02-05CH11231; SC0004993
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 10; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; transition metal dichalcogenide; MoS2; chemical vapor deposition; quantum yield; radiative lifetime; biexcitonic recombination

Citation Formats

Amani, Matin, Burke, Robert A., Ji, Xiang, Zhao, Peida, Lien, Der-Hsien, Taheri, Peyman, Ahn, Geun Ho, Kirya, Daisuke, Ager, Joel W., Yablonovitch, Eli, Kong, Jing, Dubey, Madan, and Javey, Ali. High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. United States: N. p., 2016. Web. doi:10.1021/acsnano.6b03443.
Amani, Matin, Burke, Robert A., Ji, Xiang, Zhao, Peida, Lien, Der-Hsien, Taheri, Peyman, Ahn, Geun Ho, Kirya, Daisuke, Ager, Joel W., Yablonovitch, Eli, Kong, Jing, Dubey, Madan, & Javey, Ali. High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition. United States. https://doi.org/10.1021/acsnano.6b03443
Amani, Matin, Burke, Robert A., Ji, Xiang, Zhao, Peida, Lien, Der-Hsien, Taheri, Peyman, Ahn, Geun Ho, Kirya, Daisuke, Ager, Joel W., Yablonovitch, Eli, Kong, Jing, Dubey, Madan, and Javey, Ali. Sat . "High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition". United States. https://doi.org/10.1021/acsnano.6b03443. https://www.osti.gov/servlets/purl/1557789.
@article{osti_1557789,
title = {High Luminescence Efficiency in MoS2 Grown by Chemical Vapor Deposition},
author = {Amani, Matin and Burke, Robert A. and Ji, Xiang and Zhao, Peida and Lien, Der-Hsien and Taheri, Peyman and Ahn, Geun Ho and Kirya, Daisuke and Ager, Joel W. and Yablonovitch, Eli and Kong, Jing and Dubey, Madan and Javey, Ali},
abstractNote = {We report that one of the major challenges facing the rapidly growing field of two-dimensional (2D) transition metal dichalcogenides (TMDCs) is the development of growth techniques to enable large-area synthesis of high-quality materials. Chemical vapor deposition (CVD) is one of the leading techniques for the synthesis of TMDCs; however, the quality of the material produced is limited by defects formed during the growth process. A very useful nondestructive technique that can be utilized to probe defects in semiconductors is the room-temperature photoluminescence (PL) quantum yield (QY). It was recently demonstrated that a PL QY near 100% can be obtained in MoS2 and WS2 monolayers prepared by micromechanical exfoliation by treating samples with an organic superacid: bis(trifluoromethane)sulfonimide (TFSI). Here we have performed a thorough exploration of this chemical treatment on CVD-grown MoS2 samples. We find that the as-grown monolayers must be transferred to a secondary substrate, which releases strain, to obtain high QY by TFSI treatment. Furthermore, we find that the sulfur precursor temperature during synthesis of the MoS2 plays a critical role in the effectiveness of the treatment. By satisfying the aforementioned conditions we show that the PL QY of CVD-grown monolayers can be improved from ~0.1% in the as-grown case to ~30% after treatment, with enhancement factors ranging from 100 to 1500× depending on the initial monolayer quality. We also found that after TFSI treatment the PL emission from MoS2 films was visible by eye despite the low absorption (5–10%). Lastly, the discovery of an effective passivation strategy will speed the development of scalable high-performance optoelectronic and electronic devices based on MoS2.},
doi = {10.1021/acsnano.6b03443},
journal = {ACS Nano},
number = 7,
volume = 10,
place = {United States},
year = {Sat Jun 11 00:00:00 EDT 2016},
month = {Sat Jun 11 00:00:00 EDT 2016}
}

Works referenced in this record:

Monolayer semiconductor nanocavity lasers with ultralow thresholds
journal, March 2015

  • Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.
  • Nature, Vol. 520, Issue 7545
  • DOI: 10.1038/nature14290

A subthermionic tunnel field-effect transistor with an atomically thin channel
journal, September 2015


The rise of graphene
journal, March 2007

  • Geim, A. K.; Novoselov, K. S.
  • Nature Materials, Vol. 6, Issue 3, p. 183-191
  • DOI: 10.1038/nmat1849

Emerging Photoluminescence in Monolayer MoS2
journal, April 2010

  • Splendiani, Andrea; Sun, Liang; Zhang, Yuanbo
  • Nano Letters, Vol. 10, Issue 4, p. 1271-1275
  • DOI: 10.1021/nl903868w

Evolution of Electronic Structure in Atomically Thin Sheets of WS 2 and WSe 2
journal, December 2012

  • Zhao, Weijie; Ghorannevis, Zohreh; Chu, Leiqiang
  • ACS Nano, Vol. 7, Issue 1
  • DOI: 10.1021/nn305275h

Optical Properties and Band Gap of Single- and Few-Layer MoTe 2 Crystals
journal, October 2014

  • Ruppert, Claudia; Aslan, Ozgur Burak; Heinz, Tony F.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl502557g

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
journal, April 2014

  • Fang, H.; Battaglia, C.; Carraro, C.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1405435111

Tunable band gaps in bilayer transition-metal dichalcogenides
journal, November 2011


Effects of Uniaxial and Biaxial Strain on Few-Layered Terrace Structures of MoS 2 Grown by Vapor Transport
journal, February 2016


Coupled Spin and Valley Physics in Monolayers of MoS 2 and Other Group-VI Dichalcogenides
journal, May 2012


Valley polarization in MoS2 monolayers by optical pumping
journal, June 2012

  • Zeng, Hualing; Dai, Junfeng; Yao, Wang
  • Nature Nanotechnology, Vol. 7, Issue 8
  • DOI: 10.1038/nnano.2012.95

Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium
journal, April 2014


Roll-to-roll production of 30-inch graphene films for transparent electrodes
journal, June 2010

  • Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin
  • Nature Nanotechnology, Vol. 5, Issue 8, p. 574-578
  • DOI: 10.1038/nnano.2010.132

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers
journal, June 2013

  • Najmaei, Sina; Liu, Zheng; Zhou, Wu
  • Nature Materials, Vol. 12, Issue 8, p. 754-759
  • DOI: 10.1038/nmat3673

Role of the Seeding Promoter in MoS 2 Growth by Chemical Vapor Deposition
journal, January 2014

  • Ling, Xi; Lee, Yi-Hsien; Lin, Yuxuan
  • Nano Letters, Vol. 14, Issue 2
  • DOI: 10.1021/nl4033704

Large Area Growth and Electrical Properties of p-Type WSe 2 Atomic Layers
journal, December 2014

  • Zhou, Hailong; Wang, Chen; Shaw, Jonathan C.
  • Nano Letters, Vol. 15, Issue 1
  • DOI: 10.1021/nl504256y

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity
journal, April 2015


Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
journal, November 2012

  • Wang, Qing Hua; Kalantar-Zadeh, Kourosh; Kis, Andras
  • Nature Nanotechnology, Vol. 7, Issue 11, p. 699-712
  • DOI: 10.1038/nnano.2012.193

On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates
journal, February 2008

  • Martens, Koen; Chui, Chi On; Brammertz, Guy
  • IEEE Transactions on Electron Devices, Vol. 55, Issue 2
  • DOI: 10.1109/TED.2007.912365

Tunnel field-effect transistors as energy-efficient electronic switches
journal, November 2011


Monolayer excitonic laser
journal, October 2015


Chemistry of Si‐SiO 2 interface trap annealing
journal, June 1988

  • Reed, Michael L.; Plummer, James D.
  • Journal of Applied Physics, Vol. 63, Issue 12
  • DOI: 10.1063/1.340317

Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures
journal, January 1993

  • Schnitzer, I.; Yablonovitch, E.; Caneau, C.
  • Applied Physics Letters, Vol. 62, Issue 2
  • DOI: 10.1063/1.109348

Degradation of band‐gap photoluminescence in GaAs
journal, April 1987

  • Guidotti, D.; Hasan, Eram; Hovel, H. J.
  • Applied Physics Letters, Vol. 50, Issue 14
  • DOI: 10.1063/1.98030

Intrinsic Structural Defects in Monolayer Molybdenum Disulfide
journal, May 2013

  • Zhou, Wu; Zou, Xiaolong; Najmaei, Sina
  • Nano Letters, Vol. 13, Issue 6, p. 2615-2622
  • DOI: 10.1021/nl4007479

Near-unity photoluminescence quantum yield in MoS2
journal, November 2015


Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides
journal, March 2016


Growth-substrate induced performance degradation in chemically synthesized monolayer MoS 2 field effect transistors
journal, May 2014

  • Amani, Matin; Chin, Matthew L.; Mazzoni, Alexander L.
  • Applied Physics Letters, Vol. 104, Issue 20
  • DOI: 10.1063/1.4873680

Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit
journal, July 2012

  • Miller, Owen D.; Yablonovitch, Eli; Kurtz, Sarah R.
  • IEEE Journal of Photovoltaics, Vol. 2, Issue 3, p. 303-311
  • DOI: 10.1109/JPHOTOV.2012.2198434

Engineering Light Outcoupling in 2D Materials
journal, January 2015

  • Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin
  • Nano Letters, Vol. 15, Issue 2
  • DOI: 10.1021/nl504632u

Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition
journal, November 2014

  • Liu, Zheng; Amani, Matin; Najmaei, Sina
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms6246

Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2
journal, April 2013


Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures
journal, November 1988


Improved quantitative description of Auger recombination in crystalline silicon
journal, October 2012


Very efficient light emission from bulk crystalline silicon
journal, May 2003

  • Trupke, Thorsten; Zhao, Jianhua; Wang, Aihua
  • Applied Physics Letters, Vol. 82, Issue 18
  • DOI: 10.1063/1.1572473

Observation of Excitonic Rydberg States in Monolayer MoS 2 and WS 2 by Photoluminescence Excitation Spectroscopy
journal, April 2015

  • Hill, Heather M.; Rigosi, Albert F.; Roquelet, Cyrielle
  • Nano Letters, Vol. 15, Issue 5
  • DOI: 10.1021/nl504868p

Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Hopping transport through defect-induced localized states in molybdenum disulphide
journal, October 2013

  • Qiu, Hao; Xu, Tao; Wang, Zilu
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3642

Exploring atomic defects in molybdenum disulphide monolayers
journal, February 2015

  • Hong, Jinhua; Hu, Zhixin; Probert, Matt
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7293

Electrical Transport Properties of Polycrystalline Monolayer Molybdenum Disulfide
journal, July 2014

  • Najmaei, Sina; Amani, Matin; Chin, Matthew L.
  • ACS Nano, Vol. 8, Issue 8
  • DOI: 10.1021/nn501701a

Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers
journal, December 2012

  • Gutiérrez, Humberto R.; Perea-López, Nestor; Elías, Ana Laura
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl3026357

Works referencing / citing this record:

Centimeter‐Scale and Visible Wavelength Monolayer Light‐Emitting Devices
journal, December 2019

  • Cho, Joy; Amani, Matin; Lien, Der‐Hsien
  • Advanced Functional Materials, Vol. 30, Issue 6
  • DOI: 10.1002/adfm.201907941

Two-Dimensional MoxW1−xS2 Graded Alloys: Growth and Optical Properties
journal, August 2018


Tuning carrier concentration in a superacid treated MoS2 monolayer
journal, February 2019


Analysis of photoluminescence behavior of high-quality single-layer MoS2
journal, April 2019


Atomic Layer Deposition of Crystalline MoS 2 Thin Films: New Molybdenum Precursor for Low-Temperature Film Growth
journal, March 2017

  • Mattinen, Miika; Hatanpää, Timo; Sarnet, Tiina
  • Advanced Materials Interfaces, Vol. 4, Issue 18
  • DOI: 10.1002/admi.201700123

MoS 2 pixel arrays for real-time photoluminescence imaging of redox molecules
journal, November 2019

  • Reynolds, M. F.; Guimarães, M. H. D.; Gao, H.
  • Science Advances, Vol. 5, Issue 11
  • DOI: 10.1126/sciadv.aat9476

Doping of Two-Dimensional Semiconductors: A Rapid Review and Outlook
journal, January 2019


Structural and optical characterization of stacked MoS2 nanosheets by hydrothermal method
journal, December 2017

  • Baby, Melbin; Rajeev Kumar, Kumaran
  • Journal of Materials Science: Materials in Electronics, Vol. 29, Issue 6
  • DOI: 10.1007/s10854-017-8417-x

Stacking-controllable interlayer coupling and symmetric configuration of multilayered MoS2
journal, February 2018

  • Shinde, Sachin M.; Dhakal, Krishna P.; Chen, Xiang
  • NPG Asia Materials, Vol. 10, Issue 2
  • DOI: 10.1038/am.2017.226

Highly sensitive MoS 2 photodetectors with graphene contacts
journal, March 2018


Stretchable and Broadband Cavity‐Free Lasers Based on All 2D Metamaterials
journal, January 2020

  • Yang, Yu‐Fan; Hu, Han‐Wen; Wu, Meng‐Jer
  • Advanced Optical Materials, Vol. 8, Issue 7
  • DOI: 10.1002/adom.201901326

Polytype control of MoS 2 using chemical bath deposition
journal, May 2019

  • Hedlund, Jenny K.; Walker, Amy V.
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5089661

Light Emission Properties of 2D Transition Metal Dichalcogenides: Fundamentals and Applications
journal, August 2018

  • Zheng, Weihao; Jiang, Ying; Hu, Xuelu
  • Advanced Optical Materials, Vol. 6, Issue 21
  • DOI: 10.1002/adom.201800420

Transient SHG Imaging on Ultrafast Carrier Dynamics of MoS 2 Nanosheets
journal, February 2018

  • Jang, Houk; Dhakal, Krishna P.; Joo, Kyung-Il
  • Advanced Materials, Vol. 30, Issue 14
  • DOI: 10.1002/adma.201705190

Two-dimensional light-emitting materials: preparation, properties and applications
journal, January 2018

  • Wang, Zhiwei; Jingjing, Qiu; Wang, Xiaoshan
  • Chemical Society Reviews, Vol. 47, Issue 16
  • DOI: 10.1039/c8cs00332g

Synergistic additive-mediated CVD growth and chemical modification of 2D materials
journal, January 2019

  • Jiang, Jizhou; Li, Neng; Zou, Jing
  • Chemical Society Reviews, Vol. 48, Issue 17
  • DOI: 10.1039/c9cs00348g

Remarkable quality improvement of as-grown monolayer MoS 2 by sulfur vapor pretreatment of SiO 2 /Si substrates
journal, January 2020

  • Yang, Peng; Shan, Yabing; Chen, Jing
  • Nanoscale, Vol. 12, Issue 3
  • DOI: 10.1039/c9nr09129g

Dielectric impact on exciton binding energy and quasiparticle bandgap in monolayer WS 2 and WSe 2
journal, March 2019


Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing
journal, November 2019


Evidence of indirect gap in monolayer WSe2
journal, October 2017


Metallo‐Hydrogel‐Assisted Synthesis and Direct Writing of Transition Metal Dichalcogenides
journal, May 2019


Surface-Functionalization-Mediated Direct Transfer of Molybdenum Disulfide for Large-Area Flexible Devices
journal, January 2018

  • Shinde, Sachin M.; Das, Tanmoy; Hoang, Anh Tuan
  • Advanced Functional Materials, Vol. 28, Issue 13
  • DOI: 10.1002/adfm.201706231

Two-Dimensional Semiconductor Optoelectronics Based on van der Waals Heterostructures
journal, October 2016

  • Lee, Jae; Shin, Jun-Hwan; Lee, Gwan-Hyoung
  • Nanomaterials, Vol. 6, Issue 11
  • DOI: 10.3390/nano6110193

Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing
journalarticle, January 2019


Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing.
text, January 2019

  • Liao, Feng; Yu, Jiaxin; Gu, Zhaoqi
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47548

Tuning carrier concentration in a superacid treated MoS$_2$ monolayer
text, January 2018


Spatial Control of Photoluminescence at Room Temperature by Ferroelectric Domains in Monolayer WS 2 /PZT Hybrid Structures
journal, December 2016


Solution-Based Synthesis of Few-Layer WS2 Large Area Continuous Films for Electronic Applications
journal, February 2020


Enhancing monolayer photoluminescence on optical micro/nanofibers for low-threshold lasing.
text, January 2019

  • Liao, Feng; Yu, Jiaxin; Gu, Zhaoqi
  • Apollo - University of Cambridge Repository
  • DOI: 10.17863/cam.47548

Tuning carrier concentration in a superacid treated MoS$_2$ monolayer
text, January 2018


MoS$_{2}$ pixel arrays for real-time photoluminescence imaging of redox molecules
text, January 2019