DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2

Abstract

Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit nonlinear exciton–exciton annihilation at notably low excitation densities (below ~10 excitons/μm2 in exfoliated MoS2). In this work, we show that the density threshold at which annihilation occurs can be tuned by changing the underlying substrate. When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate constant for second-order exciton–exciton annihilation, kXX [cm2/s], is reduced by 1 or 2 orders of magnitude, respectively. Using transient photoluminescence microscopy, we measure the effective room-temperature exciton diffusion coefficient in bis(trifluoromethane)sulfonimide-treated MoS2 to be in the range D = 0.03–0.06 cm2/s, corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of τ = 18 ns, which does not depend strongly on the substrate. We discuss possible mechanisms for the observed behavior, including substrate permittivity, long-range exciton–exciton or exciton–charge interactions, defect-mediated Auger recombination, and spatially inhomogeneous exciton populations arising from substrate-induced disorder. Exciton annihilation limits the overall efficiency of 2D semiconductor devices operating at high exciton densities; the ability to tune these interactions via the underlying substrate is an important step toward more efficient optoelectronic technologies featuring atomically thin materials.

Authors:
 [1]; ORCiD logo [2]; ORCiD logo [2];  [1];  [2]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]
  1. Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
  2. Univ. of California, Berkeley, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1642692
Grant/Contract Number:  
AC02-05CH11231; SC0001088; 1122374; SC0019345
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 124; Journal Issue: 22; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; transport properties; excitons; quantum mechanics; diffusion; lasers

Citation Formats

Goodman, A. J., Lien, D.-H., Ahn, G. H., Spiegel, L. L., Amani, M., Willard, A. P., Javey, A., and Tisdale, W. A. Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2. United States: N. p., 2020. Web. doi:10.1021/acs.jpcc.0c04000.
Goodman, A. J., Lien, D.-H., Ahn, G. H., Spiegel, L. L., Amani, M., Willard, A. P., Javey, A., & Tisdale, W. A. Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2. United States. https://doi.org/10.1021/acs.jpcc.0c04000
Goodman, A. J., Lien, D.-H., Ahn, G. H., Spiegel, L. L., Amani, M., Willard, A. P., Javey, A., and Tisdale, W. A. Thu . "Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2". United States. https://doi.org/10.1021/acs.jpcc.0c04000. https://www.osti.gov/servlets/purl/1642692.
@article{osti_1642692,
title = {Substrate-Dependent Exciton Diffusion and Annihilation in Chemically Treated MoS2 and WS2},
author = {Goodman, A. J. and Lien, D.-H. and Ahn, G. H. and Spiegel, L. L. and Amani, M. and Willard, A. P. and Javey, A. and Tisdale, W. A.},
abstractNote = {Atomically thin semiconductors such as monolayer MoS2 and WS2 exhibit nonlinear exciton–exciton annihilation at notably low excitation densities (below ~10 excitons/μm2 in exfoliated MoS2). In this work, we show that the density threshold at which annihilation occurs can be tuned by changing the underlying substrate. When the supporting substrate is changed from SiO2 to Al2O3 or SrTiO3, the rate constant for second-order exciton–exciton annihilation, kXX [cm2/s], is reduced by 1 or 2 orders of magnitude, respectively. Using transient photoluminescence microscopy, we measure the effective room-temperature exciton diffusion coefficient in bis(trifluoromethane)sulfonimide-treated MoS2 to be in the range D = 0.03–0.06 cm2/s, corresponding to a diffusion length of LD = 350 nm for an exciton lifetime of τ = 18 ns, which does not depend strongly on the substrate. We discuss possible mechanisms for the observed behavior, including substrate permittivity, long-range exciton–exciton or exciton–charge interactions, defect-mediated Auger recombination, and spatially inhomogeneous exciton populations arising from substrate-induced disorder. Exciton annihilation limits the overall efficiency of 2D semiconductor devices operating at high exciton densities; the ability to tune these interactions via the underlying substrate is an important step toward more efficient optoelectronic technologies featuring atomically thin materials.},
doi = {10.1021/acs.jpcc.0c04000},
journal = {Journal of Physical Chemistry. C},
number = 22,
volume = 124,
place = {United States},
year = {Thu May 21 00:00:00 EDT 2020},
month = {Thu May 21 00:00:00 EDT 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 32 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Exciton diffusion in WSe 2 monolayers embedded in a van der Waals heterostructure
journal, April 2018

  • Cadiz, F.; Robert, C.; Courtade, E.
  • Applied Physics Letters, Vol. 112, Issue 15
  • DOI: 10.1063/1.5026478

Exciton trapping is responsible for the long apparent lifetime in acid-treated MoS 2
journal, September 2017


Reduced Dielectric Screening and Enhanced Energy Transfer in Single- and Few-Layer MoS 2
journal, October 2014

  • Prins, Ferry; Goodman, Aaron J.; Tisdale, William A.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl5019386

Exciton transport in strained monolayer WSe 2
journal, December 2018

  • Cordovilla Leon, Darwin F.; Li, Zidong; Jang, Sung Woon
  • Applied Physics Letters, Vol. 113, Issue 25
  • DOI: 10.1063/1.5063263

Dielectric Screening of Excitons and Trions in Single-Layer MoS 2
journal, September 2014

  • Lin, Yuxuan; Ling, Xi; Yu, Lili
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl501988y

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
journal, April 2014

  • Fang, H.; Battaglia, C.; Carraro, C.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 17
  • DOI: 10.1073/pnas.1405435111

Visualization of exciton transport in ordered and disordered molecular solids
journal, April 2014

  • Akselrod, Gleb M.; Deotare, Parag B.; Thompson, Nicholas J.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4646

Recombination Kinetics and Effects of Superacid Treatment in Sulfur- and Selenium-Based Transition Metal Dichalcogenides
journal, March 2016


Energy Transfer from Quantum Dots to Graphene and MoS 2 : The Role of Absorption and Screening in Two-Dimensional Materials
journal, March 2016


Transport Dynamics of Neutral Excitons and Trions in Monolayer WS 2
journal, September 2016


Observation of Rapid Exciton–Exciton Annihilation in Monolayer Molybdenum Disulfide
journal, September 2014

  • Sun, Dezheng; Rao, Yi; Reider, Georg A.
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl5021975

Absorption of light by excitons and trions in monolayers of metal dichalcogenide Mo S 2 : Experiments and theory
journal, May 2014


Enhancing Photoluminescence and Mobilities in WS 2 Monolayers with Oleic Acid Ligands
journal, August 2019


Tunable Photoluminescence of Monolayer MoS 2 via Chemical Doping
journal, November 2013

  • Mouri, Shinichiro; Miyauchi, Yuhei; Matsuda, Kazunari
  • Nano Letters, Vol. 13, Issue 12
  • DOI: 10.1021/nl403036h

Effect of Dielectric Environment on Excitonic Dynamics in Monolayer WS 2
journal, September 2019


Atomically Thin MoS2 A New Direct-Gap Semiconductor
journal, September 2010


Binding energies and spatial structures of small carrier complexes in monolayer transition-metal dichalcogenides via diffusion Monte Carlo
journal, October 2015

  • Mayers, Matthew Z.; Berkelbach, Timothy C.; Hybertsen, Mark S.
  • Physical Review B, Vol. 92, Issue 16
  • DOI: 10.1103/PhysRevB.92.161404

Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors
journal, May 2019


Near-unity photoluminescence quantum yield in MoS2
journal, November 2015


Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides
journal, June 2017


Tuning ultrafast electron thermalization pathways in a van der Waals heterostructure
journal, January 2016

  • Ma, Qiong; Andersen, Trond I.; Nair, Nityan L.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3620

Transient Absorption Microscopy of Monolayer and Bulk WSe 2
journal, February 2014

  • Cui, Qiannan; Ceballos, Frank; Kumar, Nardeep
  • ACS Nano, Vol. 8, Issue 3
  • DOI: 10.1021/nn500277y

Exciton dynamics and annihilation in WS 2 2D semiconductors
journal, January 2015


Highly mobile charge-transfer excitons in two-dimensional WS 2 /tetracene heterostructures
journal, January 2018


Nonlinear photoluminescence in atomically thin layered WSe 2 arising from diffusion-assisted exciton-exciton annihilation
journal, October 2014


Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
journal, August 2014

  • Ugeda, Miguel M.; Bradley, Aaron J.; Shi, Su-Fei
  • Nature Materials, Vol. 13, Issue 12
  • DOI: 10.1038/nmat4061

Exciton Dynamics in Suspended Monolayer and Few-Layer MoS 2 2D Crystals
journal, January 2013

  • Shi, Hongyan; Yan, Rusen; Bertolazzi, Simone
  • ACS Nano, Vol. 7, Issue 2
  • DOI: 10.1021/nn303973r

Exciton-dominant electroluminescence from a diode of monolayer MoS 2
journal, May 2014

  • Ye, Yu; Ye, Ziliang; Gharghi, Majid
  • Applied Physics Letters, Vol. 104, Issue 19
  • DOI: 10.1063/1.4875959

Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide
journal, July 2012


Room-temperature continuous-wave lasing from monolayer molybdenum ditelluride integrated with a silicon nanobeam cavity
journal, July 2017

  • Li, Yongzhuo; Zhang, Jianxing; Huang, Dandan
  • Nature Nanotechnology, Vol. 12, Issue 10
  • DOI: 10.1038/nnano.2017.128

Charge carrier dynamics in bulk MoS 2 crystal studied by transient absorption microscopy
journal, April 2013

  • Kumar, Nardeep; He, Jiaqi; He, Dawei
  • Journal of Applied Physics, Vol. 113, Issue 13
  • DOI: 10.1063/1.4799110

Inhibited and Enhanced Spontaneous Emission from Optically Thin AlGaAs/GaAs Double Heterostructures
journal, November 1988


Exciton Dynamics, Transport, and Annihilation in Atomically Thin Two-Dimensional Semiconductors
journal, July 2017


Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p–n junctions
journal, March 2014

  • Ross, Jason S.; Klement, Philip; Jones, Aaron M.
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.26

Subdiffusive Exciton Transport in Quantum Dot Solids
journal, May 2014

  • Akselrod, Gleb M.; Prins, Ferry; Poulikakos, Lisa V.
  • Nano Letters, Vol. 14, Issue 6
  • DOI: 10.1021/nl501190s

Vertical and in-plane heterostructures from WS2/MoS2 monolayers
journal, September 2014

  • Gong, Yongji; Lin, Junhao; Wang, Xingli
  • Nature Materials, Vol. 13, Issue 12, p. 1135-1142
  • DOI: 10.1038/nmat4091

Exciton diffusion in monolayer and bulk MoSe 2
journal, January 2014

  • Kumar, Nardeep; Cui, Qiannan; Ceballos, Frank
  • Nanoscale, Vol. 6, Issue 9
  • DOI: 10.1039/C3NR06863C

Optoelectronic devices based on electrically tunable p–n diodes in a monolayer dichalcogenide
journal, March 2014

  • Baugher, Britton W. H.; Churchill, Hugh O. H.; Yang, Yafang
  • Nature Nanotechnology, Vol. 9, Issue 4
  • DOI: 10.1038/nnano.2014.25

Frequency-dependent substrate screening of excitons in atomically thin transition metal dichalcogenide semiconductors
journal, July 2018


Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures
journal, August 2014

  • Hong, Xiaoping; Kim, Jonghwan; Shi, Su-Fei
  • Nature Nanotechnology, Vol. 9, Issue 9
  • DOI: 10.1038/nnano.2014.167

Dielectric disorder in two-dimensional materials
journal, August 2019


Permittivity of Strontium Titanate
journal, May 1972

  • Neville, R. C.; Hoeneisen, B.; Mead, C. A.
  • Journal of Applied Physics, Vol. 43, Issue 5
  • DOI: 10.1063/1.1661463

Exciton Hall effect in monolayer MoS2
journal, October 2017

  • Onga, Masaru; Zhang, Yijin; Ideue, Toshiya
  • Nature Materials, Vol. 16, Issue 12
  • DOI: 10.1038/nmat4996

Can Disorder Enhance Incoherent Exciton Diffusion?
journal, July 2015

  • Lee, Elizabeth M. Y.; Tisdale, William A.; Willard, Adam P.
  • The Journal of Physical Chemistry B, Vol. 119, Issue 30
  • DOI: 10.1021/acs.jpcb.5b01886

Interconversion between Free Charges and Bound Excitons in 2D Hybrid Lead Halide Perovskites
journal, November 2017

  • Gélvez-Rueda, María C.; Hutter, Eline M.; Cao, Duyen H.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b10705

Tightly bound trions in monolayer MoS2
journal, December 2012

  • Mak, Kin Fai; He, Keliang; Lee, Changgu
  • Nature Materials, Vol. 12, Issue 3
  • DOI: 10.1038/nmat3505

Electrostatic Screening of Charged Defects in Monolayer MoS 2
journal, April 2017


Highly Stable Near-Unity Photoluminescence Yield in Monolayer MoS 2 by Fluoropolymer Encapsulation and Superacid Treatment
journal, April 2017


Disorder strongly enhances Auger recombination in conductive quantum-dot solids
journal, September 2013

  • Gao, Yunan; Sandeep, C. S. Suchand; Schins, Juleon M.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3329

Diffusion dynamics of valley excitons by transient grating spectroscopy in monolayer WSe 2
journal, September 2019

  • Wang, Jing; Guo, Yang; Huang, Yuan
  • Applied Physics Letters, Vol. 115, Issue 13
  • DOI: 10.1063/1.5116263

Observation of biexcitons in monolayer WSe2
journal, May 2015

  • You, Yumeng; Zhang, Xiao-Xiao; Berkelbach, Timothy C.
  • Nature Physics, Vol. 11, Issue 6
  • DOI: 10.1038/nphys3324

Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS 2
journal, August 2014


Single-layer MoS2 transistors
journal, January 2011

  • Radisavljevic, B.; Radenovic, A.; Brivio, J.
  • Nature Nanotechnology, Vol. 6, Issue 3, p. 147-150
  • DOI: 10.1038/nnano.2010.279

Electrical Control of near-Field Energy Transfer between Quantum Dots and Two-Dimensional Semiconductors
journal, June 2015


Monolayer semiconductor nanocavity lasers with ultralow thresholds
journal, March 2015

  • Wu, Sanfeng; Buckley, Sonia; Schaibley, John R.
  • Nature, Vol. 520, Issue 7545
  • DOI: 10.1038/nature14290

Chemically Driven Tunable Light Emission of Charged and Neutral Excitons in Monolayer WS 2
journal, October 2014

  • Peimyoo, Namphung; Yang, Weihuang; Shang, Jingzhi
  • ACS Nano, Vol. 8, Issue 11
  • DOI: 10.1021/nn504196n

Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS 2 , Mo S e 2 , WS 2 , and WS e 2
journal, November 2014


Electroluminescence in Single Layer MoS2
journal, March 2013

  • Sundaram, R. S.; Engel, M.; Lombardo, A.
  • Nano Letters, Vol. 13, Issue 4, p. 1416-1421
  • DOI: 10.1021/nl400516a

Exciton diffusion in monolayer semiconductors with suppressed disorder
journal, March 2020