skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode

Abstract

Artificial solid-electrolyte interphase (SEI) is one of the key approaches in addressing the low reversibility and dendritic growth problems of lithium metal anode, yet its current effect is still insufficient due to insufficient stability. Here, a new principle of “simultaneous high ionic conductivity and homogeneity” is proposed for stabilizing SEI and lithium metal anodes. Fabricated by a facile, environmentally friendly, and low-cost lithium solid-sulfur vapor reaction at elevated temperature, a designed lithium sulfide protective layer successfully maintains its protection function during cycling, which is confirmed by both simulations and experiments. Stable dendrite-free cycling of lithium metal anode is realized even at a high areal capacity of 5 mAh cm-2, and prototype Li–Li4Ti5O12 cell with limited lithium also achieves 900 stable cycles. These findings give new insight into the ideal SEI composition and structure and provide new design strategies for stable lithium metal batteries.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [1];  [1];  [1]; ORCiD logo [1];  [1]; ORCiD logo [1];  [2]
  1. Stanford Univ., CA (United States). Dept. of Materials Science and Engineering
  2. SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1532475
Alternate Identifier(s):
OSTI ID: 1510099
Grant/Contract Number:  
AC02-76SF00515
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 9; Journal Issue: 22; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; artificial SEI; compositional homogeneity; high ionic conductivity; lithium metal batteries

Citation Formats

Chen, Hao, Pei, Allen, Lin, Dingchang, Xie, Jin, Yang, Ankun, Xu, Jinwei, Lin, Kaixiang, Wang, Jiangyan, Wang, Hansen, Shi, Feifei, Boyle, David, and Cui, Yi. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. United States: N. p., 2019. Web. doi:10.1002/aenm.201900858.
Chen, Hao, Pei, Allen, Lin, Dingchang, Xie, Jin, Yang, Ankun, Xu, Jinwei, Lin, Kaixiang, Wang, Jiangyan, Wang, Hansen, Shi, Feifei, Boyle, David, & Cui, Yi. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode. United States. doi:10.1002/aenm.201900858.
Chen, Hao, Pei, Allen, Lin, Dingchang, Xie, Jin, Yang, Ankun, Xu, Jinwei, Lin, Kaixiang, Wang, Jiangyan, Wang, Hansen, Shi, Feifei, Boyle, David, and Cui, Yi. Tue . "Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode". United States. doi:10.1002/aenm.201900858. https://www.osti.gov/servlets/purl/1532475.
@article{osti_1532475,
title = {Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode},
author = {Chen, Hao and Pei, Allen and Lin, Dingchang and Xie, Jin and Yang, Ankun and Xu, Jinwei and Lin, Kaixiang and Wang, Jiangyan and Wang, Hansen and Shi, Feifei and Boyle, David and Cui, Yi},
abstractNote = {Artificial solid-electrolyte interphase (SEI) is one of the key approaches in addressing the low reversibility and dendritic growth problems of lithium metal anode, yet its current effect is still insufficient due to insufficient stability. Here, a new principle of “simultaneous high ionic conductivity and homogeneity” is proposed for stabilizing SEI and lithium metal anodes. Fabricated by a facile, environmentally friendly, and low-cost lithium solid-sulfur vapor reaction at elevated temperature, a designed lithium sulfide protective layer successfully maintains its protection function during cycling, which is confirmed by both simulations and experiments. Stable dendrite-free cycling of lithium metal anode is realized even at a high areal capacity of 5 mAh cm-2, and prototype Li–Li4Ti5O12 cell with limited lithium also achieves 900 stable cycles. These findings give new insight into the ideal SEI composition and structure and provide new design strategies for stable lithium metal batteries.},
doi = {10.1002/aenm.201900858},
journal = {Advanced Energy Materials},
number = 22,
volume = 9,
place = {United States},
year = {2019},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 33 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction
journal, December 2015


Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth
journal, February 2016

  • Yan, Kai; Lu, Zhenda; Lee, Hyun-Wook
  • Nature Energy, Vol. 1, Issue 3, Article No. 16010
  • DOI: 10.1038/nenergy.2016.10

Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy
journal, October 2018


High-Performance Lithium Metal Negative Electrode with a Soft and Flowable Polymer Coating
journal, November 2016


Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes
journal, August 2018


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Sulfurized solid electrolyte interphases with a rapid Li+ diffusion on dendrite-free Li metal anodes
journal, January 2018


Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode
journal, April 2016


Recent results on lithium ion conductors
journal, July 1977


Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries
journal, September 2018

  • Yan, Chong; Yao, Yu-Xing; Chen, Xiang
  • Angewandte Chemie International Edition, Vol. 57, Issue 43
  • DOI: 10.1002/anie.201807034

A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
journal, September 2017


Ultrafine Silver Nanoparticles for Seeded Lithium Deposition toward Stable Lithium Metal Anode
journal, August 2017

  • Yang, Chunpeng; Yao, Yonggang; He, Shuaiming
  • Advanced Materials, Vol. 29, Issue 38
  • DOI: 10.1002/adma.201702714

High-capacity rechargeable batteries based on deeply cyclable lithium metal anodes
journal, May 2018

  • Shi, Qiuwei; Zhong, Yiren; Wu, Min
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 22
  • DOI: 10.1073/pnas.1803634115

High-Quality Graphene Microflower Design for High-Performance Li-S and Al-Ion Batteries
journal, May 2017


Fast ion transport at solid–solid interfaces in hybrid battery anodes
journal, March 2018


Strong texturing of lithium metal in batteries
journal, October 2017

  • Shi, Feifei; Pei, Allen; Vailionis, Arturas
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 46
  • DOI: 10.1073/pnas.1708224114

Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes
journal, January 1997

  • Peled, E.
  • Journal of The Electrochemical Society, Vol. 144, Issue 8
  • DOI: 10.1149/1.1837858

Lithium metal stripping beneath the solid electrolyte interphase
journal, August 2018

  • Shi, Feifei; Pei, Allen; Boyle, David Thomas
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 34
  • DOI: 10.1073/pnas.1806878115

Transport Properties of LiPF[sub 6]-Based Li-Ion Battery Electrolytes
journal, January 2005

  • Valo̸en, Lars Ole; Reimers, Jan N.
  • Journal of The Electrochemical Society, Vol. 152, Issue 5
  • DOI: 10.1149/1.1872737

Lithium Nitrate Solvation Chemistry in Carbonate Electrolyte Sustains High-Voltage Lithium Metal Batteries
journal, September 2018


    Works referencing / citing this record:

    Inside or Outside: Origin of Lithium Dendrite Formation of All Solid‐State Electrolytes
    journal, September 2019

    • Mo, Fangjie; Ruan, Jiafeng; Sun, Shuxian
    • Advanced Energy Materials, Vol. 9, Issue 40
    • DOI: 10.1002/aenm.201902123

    In Situ Conversion of Cu 3 P Nanowires to Mixed Ion/Electron‐Conducting Skeleton for Homogeneous Lithium Deposition
    journal, November 2019

    • Sun, Changzhi; Lin, Aming; Li, Wenwen
    • Advanced Energy Materials, Vol. 10, Issue 3
    • DOI: 10.1002/aenm.201902989

    In Situ Generation of Artificial Solid‐Electrolyte Interphases on 3D Conducting Scaffolds for High‐Performance Lithium‐Metal Anodes
    journal, January 2020


    4.5 V High‐Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode
    journal, August 2019


    4.5 V High‐Voltage Rechargeable Batteries Enabled by the Reduction of Polarization on the Lithium Metal Anode
    journal, October 2019

    • Yan, Chong; Xu, Rui; Qin, Jin‐Lei
    • Angewandte Chemie International Edition, Vol. 58, Issue 43
    • DOI: 10.1002/anie.201908874

    FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries
    journal, January 2020

    • Xue, Weijiang; Shi, Zhe; Huang, Mingjun
    • Energy & Environmental Science, Vol. 13, Issue 1
    • DOI: 10.1039/c9ee02538c