DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase

Abstract

Abstract Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm −2 , a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO 4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO 4 //Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm −2 for 110 times at a negligible capacity decay of 0.01% per cycle.

Authors:
 [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [2]
  1. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA
  2. Department of Chemical and Biomolecular Engineering University of Maryland College Park MD 20742 USA, Department of Chemistry and Biochemistry University of Maryland College Park MD 20742 USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1599685
Grant/Contract Number:  
DE‐EE0008200
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Name: Advanced Materials Journal Volume: 32 Journal Issue: 12; Journal ID: ISSN 0935-9648
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English

Citation Formats

Cui, Chunyu, Yang, Chongyin, Eidson, Nico, Chen, Ji, Han, Fudong, Chen, Long, Luo, Chao, Wang, Peng‐Fei, Fan, Xiulin, and Wang, Chunsheng. A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase. Germany: N. p., 2020. Web. doi:10.1002/adma.201906427.
Cui, Chunyu, Yang, Chongyin, Eidson, Nico, Chen, Ji, Han, Fudong, Chen, Long, Luo, Chao, Wang, Peng‐Fei, Fan, Xiulin, & Wang, Chunsheng. A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase. Germany. https://doi.org/10.1002/adma.201906427
Cui, Chunyu, Yang, Chongyin, Eidson, Nico, Chen, Ji, Han, Fudong, Chen, Long, Luo, Chao, Wang, Peng‐Fei, Fan, Xiulin, and Wang, Chunsheng. Fri . "A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase". Germany. https://doi.org/10.1002/adma.201906427.
@article{osti_1599685,
title = {A Highly Reversible, Dendrite‐Free Lithium Metal Anode Enabled by a Lithium‐Fluoride‐Enriched Interphase},
author = {Cui, Chunyu and Yang, Chongyin and Eidson, Nico and Chen, Ji and Han, Fudong and Chen, Long and Luo, Chao and Wang, Peng‐Fei and Fan, Xiulin and Wang, Chunsheng},
abstractNote = {Abstract Metallic lithium is the most competitive anode material for next‐generation lithium (Li)‐ion batteries. However, one of its major issues is Li dendrite growth and detachment, which not only causes safety issues, but also continuously consumes electrolyte and Li, leading to low coulombic efficiency (CE) and short cycle life for Li metal batteries. Herein, the Li dendrite growth of metallic lithium anode is suppressed by forming a lithium fluoride (LiF)‐enriched solid electrolyte interphase (SEI) through the lithiation of surface‐fluorinated mesocarbon microbeads (MCMB‐F) anodes. The robust LiF‐enriched SEI with high interfacial energy to Li metal effectively promotes planar growth of Li metal on the Li surface and meanwhile prevents its vertical penetration into the LiF‐enriched SEI from forming Li dendrites. At a discharge capacity of 1.2 mAh cm −2 , a high CE of >99.2% for Li plating/stripping in FEC‐based electrolyte is achieved within 25 cycles. Coupling the pre‐lithiated MCMB‐F (Li@MCMB‐F) anode with a commercial LiFePO 4 cathode at the positive/negative (P/N) capacity ratio of 1:1, the LiFePO 4 //Li@MCMB‐F cells can be charged/discharged at a high areal capacity of 2.4 mAh cm −2 for 110 times at a negligible capacity decay of 0.01% per cycle.},
doi = {10.1002/adma.201906427},
journal = {Advanced Materials},
number = 12,
volume = 32,
place = {Germany},
year = {Fri Feb 14 00:00:00 EST 2020},
month = {Fri Feb 14 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/adma.201906427

Citation Metrics:
Cited by: 138 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

SEI Dynamics in Metal Oxide Conversion Electrodes of Li-Ion Batteries
journal, November 2017

  • Rezvani, S. J.; Nobili, F.; Gunnella, R.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 47
  • DOI: 10.1021/acs.jpcc.7b08259

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery
journal, December 2018


Role of LiNO3 in rechargeable lithium/sulfur battery
journal, May 2012


Stabilization of Lithium Metal Anodes by Hybrid Artificial Solid Electrolyte Interphase
journal, July 2017


An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries
journal, July 2002


Synergistic Effect of Oxygen and LiNO 3 on the Interfacial Stability of Lithium Metal in a Li/O 2 Battery
journal, January 2013

  • Giordani, Vincent; Walker, Wesley; Bryantsev, Vyacheslav S.
  • Journal of The Electrochemical Society, Vol. 160, Issue 9
  • DOI: 10.1149/2.097309jes

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Role of Capping Agent in Wet Synthesis of Nanoparticles
journal, April 2017


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage
journal, January 2012

  • Gong, Peiwei; Wang, Zhaofeng; Wang, Jinqing
  • Journal of Materials Chemistry, Vol. 22, Issue 33
  • DOI: 10.1039/c2jm32294c

Ultrahigh–current density anodes with interconnected Li metal reservoir through overlithiation of mesoporous AlF 3 framework
journal, September 2017


An Interconnected Channel-Like Framework as Host for Lithium Metal Composite Anodes
journal, January 2019

  • Wang, Hansen; Lin, Dingchang; Xie, Jin
  • Advanced Energy Materials, Vol. 9, Issue 7
  • DOI: 10.1002/aenm.201802720

Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

3D Porous Cu Current Collector/Li-Metal Composite Anode for Stable Lithium-Metal Batteries
journal, March 2017

  • Li, Qi; Zhu, Shoupu; Lu, Yingying
  • Advanced Functional Materials, Vol. 27, Issue 18
  • DOI: 10.1002/adfm.201606422

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


Structure and Electrochemistry of Carbon-Metal Fluoride Nanocomposites Fabricated by Solid-State Redox Conversion Reaction
journal, January 2005

  • Plitz, I.; Badway, F.; Al-Sharab, J.
  • Journal of The Electrochemical Society, Vol. 152, Issue 2, p. A307-A315
  • DOI: 10.1149/1.1842035

Li 2 S 5 -based ternary-salt electrolyte for robust lithium metal anode
journal, April 2016


Quantifying inactive lithium in lithium metal batteries
journal, August 2019


Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?
journal, December 2008

  • Xia, Younan; Xiong, Yujie; Lim, Byungkwon
  • Angewandte Chemie International Edition, Vol. 48, Issue 1, p. 60-103
  • DOI: 10.1002/anie.200802248

How we made the Li-ion rechargeable battery
journal, March 2018


Carbon-coated fluorinated graphite for high energy and high power densities primary lithium batteries
journal, May 2010


Investigations of the Exothermic Reactions of Natural Graphite Anode for Li-Ion Batteries during Thermal Runaway
journal, January 2005

  • Yang, Hui; Bang, Hyunjoo; Amine, Khalil
  • Journal of The Electrochemical Society, Vol. 152, Issue 1
  • DOI: 10.1149/1.1836126

Defluorination and covalent grafting of fluorinated graphene with TEMPO in a radical mechanism
journal, January 2017

  • Lai, Wenchuan; Xu, Dazhou; Wang, Xu
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 35
  • DOI: 10.1039/C7CP04439A

The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth
journal, June 2015

  • Li, Weiyang; Yao, Hongbin; Yan, Kai
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms8436

Carbonate Free Electrolyte for Lithium Ion Batteries Containing γ-Butyrolactone and Methyl Butyrate
journal, January 2015

  • Lazar, Michael L.; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 162, Issue 6
  • DOI: 10.1149/2.0601506jes

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Stitching h-BN by atomic layer deposition of LiF as a stable interface for lithium metal anode
journal, November 2017


Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery
journal, February 2019


Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Fluorine reactivity with graphite and fullerenes. fluoride derivatives and some practical electrochemical applications
journal, June 1996


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Tailoring Lithium Deposition via an SEI‐Functionalized Membrane Derived from LiF Decorated Layered Carbon Structure
journal, January 2019


Graphite-Encapsulated Li-Metal Hybrid Anodes for High-Capacity Li Batteries
journal, August 2016


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Role of Lithium Salt on Solid Electrolyte Interface (SEI) Formation and Structure in Lithium Ion Batteries
journal, January 2014

  • Nie, Mengyun; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 161, Issue 6
  • DOI: 10.1149/2.054406jes

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Pushing the Theoretical Limit of Li-CF x Batteries: A Tale of Bifunctional Electrolyte
journal, April 2014

  • Rangasamy, Ezhiylmurugan; Li, Juchuan; Sahu, Gayatri
  • Journal of the American Chemical Society, Vol. 136, Issue 19
  • DOI: 10.1021/ja5026358

Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells
journal, January 2000


An Artificial Solid Electrolyte Interphase with High Li-Ion Conductivity, Mechanical Strength, and Flexibility for Stable Lithium Metal Anodes
journal, December 2016

  • Liu, Yayuan; Lin, Dingchang; Yuen, Pak Yan
  • Advanced Materials, Vol. 29, Issue 10
  • DOI: 10.1002/adma.201605531

Controllable defluorination of fluorinated graphene and weakening of C–F bonding under the action of nucleophilic dipolar solvent
journal, January 2016

  • Wang, Xu; Wang, Weimiao; Liu, Yang
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 4
  • DOI: 10.1039/C5CP06914A

Functionalization of Carbon Nano-onions by Direct Fluorination
journal, February 2007

  • Liu, Yu; Vander Wal, Randy L.; Khabashesku, Valery N.
  • Chemistry of Materials, Vol. 19, Issue 4
  • DOI: 10.1021/cm062177j

A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries
journal, February 2013

  • Suo, Liumin; Hu, Yong-Sheng; Li, Hong
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2513

Li–O2 and Li–S batteries with high energy storage
journal, January 2012

  • Bruce, Peter G.; Freunberger, Stefan A.; Hardwick, Laurence J.
  • Nature Materials, Vol. 11, Issue 1, p. 19-29
  • DOI: 10.1038/nmat3191

Promise and reality of post-lithium-ion batteries with high energy densities
journal, March 2016


A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles
journal, December 2015

  • Choudhury, Snehashis; Mangal, Rahul; Agrawal, Akanksha
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms10101

Augmentation of graphite purity from mineral resources and enhancing % graphitization using microwave irradiation: XRD and Raman studies
journal, September 2018


Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries
journal, January 2018

  • Suo, Liumin; Xue, Weijiang; Gobet, Mallory
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 6
  • DOI: 10.1073/pnas.1712895115

Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362