skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Toward a Four-Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage

Abstract

Notwithstanding recent advances, current polymeric organic cathode materials have failed to incorporate a high degree of lithium storage in a small molecular framework, resulting in low capacities relative to monomers. This report discloses the development of a lithium salt polymer of dihydroxyanthraquinone (LiDHAQS) capable of storing four Li + per monomer. The combination of storing four Li + per monomer and a low molecular weight monomer results in a capacity of 330 mA h g –1, a record for this class of material. The additional redox events responsible for added Li + storage occur between 3.0 and 3.6 V versus Li/Li + resulting in an average discharge potential of 2.5 V versus Li/Li +. These metrics combined yield a high energy density of 825 W h kg –1 which is a 55% improvement over commercial lithium cobalt oxide. As a result, the high performance of LiDHAQS makes it a promising material for next generation Li + cathodes.

Authors:
 [1];  [1];  [1]; ORCiD logo [1];  [1]
  1. Univ. of Illinois at Urbana-Champaign, IL (United States)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Energy Frontier Research Center (EFRC) Center for Electrical Energy Storage (CEES)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1469964
Alternate Identifier(s):
OSTI ID: 1396416
Grant/Contract Number:  
[AC02-06CH11357]
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
[ Journal Volume: 8; Journal Issue: 5; Related Information: CEES partners with Argonne National Laboratory (lead); University of Illinois, Urbana-Champaign; Northwest University]; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; cathodes; lithium; polymer; quinone

Citation Formats

Petronico, Aaron, Bassett, Kimberly L., Nicolau, Bruno G., Gewirth, Andrew A., and Nuzzo, Ralph G. Toward a Four-Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage. United States: N. p., 2017. Web. doi:10.1002/aenm.201700960.
Petronico, Aaron, Bassett, Kimberly L., Nicolau, Bruno G., Gewirth, Andrew A., & Nuzzo, Ralph G. Toward a Four-Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage. United States. doi:10.1002/aenm.201700960.
Petronico, Aaron, Bassett, Kimberly L., Nicolau, Bruno G., Gewirth, Andrew A., and Nuzzo, Ralph G. Wed . "Toward a Four-Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage". United States. doi:10.1002/aenm.201700960. https://www.osti.gov/servlets/purl/1469964.
@article{osti_1469964,
title = {Toward a Four-Electron Redox Quinone Polymer for High Capacity Lithium Ion Storage},
author = {Petronico, Aaron and Bassett, Kimberly L. and Nicolau, Bruno G. and Gewirth, Andrew A. and Nuzzo, Ralph G.},
abstractNote = {Notwithstanding recent advances, current polymeric organic cathode materials have failed to incorporate a high degree of lithium storage in a small molecular framework, resulting in low capacities relative to monomers. This report discloses the development of a lithium salt polymer of dihydroxyanthraquinone (LiDHAQS) capable of storing four Li+ per monomer. The combination of storing four Li+ per monomer and a low molecular weight monomer results in a capacity of 330 mA h g–1, a record for this class of material. The additional redox events responsible for added Li+ storage occur between 3.0 and 3.6 V versus Li/Li+ resulting in an average discharge potential of 2.5 V versus Li/Li+. These metrics combined yield a high energy density of 825 W h kg–1 which is a 55% improvement over commercial lithium cobalt oxide. As a result, the high performance of LiDHAQS makes it a promising material for next generation Li+ cathodes.},
doi = {10.1002/aenm.201700960},
journal = {Advanced Energy Materials},
number = [5],
volume = [8],
place = {United States},
year = {2017},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 8 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Building better batteries
journal, February 2008

  • Armand, M.; Tarascon, J.-M.
  • Nature, Vol. 451, Issue 7179, p. 652-657
  • DOI: 10.1038/451652a

Functional Materials for Rechargeable Batteries
journal, March 2011

  • Cheng, Fangyi; Liang, Jing; Tao, Zhanliang
  • Advanced Materials, Vol. 23, Issue 15
  • DOI: 10.1002/adma.201003587

Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries
journal, January 2012

  • Thackeray, Michael M.; Wolverton, Christopher; Isaacs, Eric D.
  • Energy & Environmental Science, Vol. 5, Issue 7
  • DOI: 10.1039/c2ee21892e

Electrical Energy Storage for the Grid: A Battery of Choices
journal, November 2011


Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Research on Advanced Materials for Li-ion Batteries
journal, December 2009

  • Li, Hong; Wang, Zhaoxiang; Chen, Liquan
  • Advanced Materials, Vol. 21, Issue 45, p. 4593-4607
  • DOI: 10.1002/adma.200901710

Carbon-Based Materials for Lithium-Ion Batteries, Electrochemical Capacitors, and Their Hybrid Devices
journal, July 2015


Lithium Batteries and Cathode Materials
journal, October 2004

  • Whittingham, M. Stanley
  • Chemical Reviews, Vol. 104, Issue 10, p. 4271-4302
  • DOI: 10.1021/cr020731c

Li-ion battery materials: present and future
journal, June 2015


Towards greener and more sustainable batteries for electrical energy storage
journal, November 2014


Organic Electrode Materials for Rechargeable Lithium Batteries
journal, May 2012

  • Liang, Yanliang; Tao, Zhanliang; Chen, Jun
  • Advanced Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1002/aenm.201100795

Carbonyls: Powerful Organic Materials for Secondary Batteries
journal, April 2015

  • Häupler, Bernhard; Wild, Andreas; Schubert, Ulrich S.
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402034

Function-oriented design of conjugated carbonyl compound electrodes for high energy lithium batteries
journal, January 2013

  • Liang, Yanliang; Zhang, Peng; Chen, Jun
  • Chemical Science, Vol. 4, Issue 3
  • DOI: 10.1039/c3sc22093a

From Biomass to a Renewable LiXC6O6 Organic Electrode for Sustainable Li-Ion Batteries
journal, April 2008


A Sulfur Heterocyclic Quinone Cathode and a Multifunctional Binder for a High-Performance Rechargeable Lithium-Ion Battery
journal, April 2016

  • Ma, Ting; Zhao, Qing; Wang, Jianbin
  • Angewandte Chemie International Edition, Vol. 55, Issue 22
  • DOI: 10.1002/anie.201601119

Long-Life, High-Rate Lithium-Organic Batteries Based on Naphthoquinone Derivatives
journal, March 2016


Polymer-Based Organic Batteries
journal, August 2016


Polymer-Bound Pyrene-4,5,9,10-tetraone for Fast-Charge and -Discharge Lithium-Ion Batteries with High Capacity
journal, November 2012

  • Nokami, Toshiki; Matsuo, Takahiro; Inatomi, Yuu
  • Journal of the American Chemical Society, Vol. 134, Issue 48
  • DOI: 10.1021/ja306663g

Poly(benzoquinonyl sulfide) as a High-Energy Organic Cathode for Rechargeable Li and Na Batteries
journal, June 2015


A quinone-based oligomeric lithium salt for superior Li–organic batteries
journal, January 2014

  • Song, Zhiping; Qian, Yumin; Liu, Xizheng
  • Energy Environ. Sci., Vol. 7, Issue 12
  • DOI: 10.1039/C4EE02575J

Quinizarin boroacetate and 1,4-diaminoanthraquinone diboroacetate as dienophiles
journal, January 1977

  • Birch, Alan M.; Mercer, Anthony J. H.; Chippendale, A. Margaret
  • Journal of the Chemical Society, Chemical Communications, Issue 21
  • DOI: 10.1039/c39770000745

Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries
journal, January 2009

  • Song, Zhiping; Zhan, Hui; Zhou, Yunhong
  • Chemical Communications, Vol. 0, Issue 4, p. 448-450
  • DOI: 10.1039/B814515F

Materials’ Methods: NMR in Battery Research
journal, November 2016


A novel polyquinone cathode material for rechargeable lithium batteries
journal, July 2013


Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C
journal, January 2000


A MC/AQ Parasitic Composite as Cathode Material for Lithium Battery
journal, January 2011

  • Lei, Zhao; Wei-kun, Wang; An-bang, Wang
  • Journal of The Electrochemical Society, Vol. 158, Issue 9
  • DOI: 10.1149/1.3605719

Polyanthraquinone as a Reliable Organic Electrode for Stable and Fast Lithium Storage
journal, September 2015

  • Song, Zhiping; Qian, Yumin; Gordin, Mikhail L.
  • Angewandte Chemie International Edition, Vol. 54, Issue 47
  • DOI: 10.1002/anie.201506673

The rise of organic electrode materials for energy storage
journal, January 2016

  • Schon, Tyler B.; McAllister, Bryony T.; Li, Peng-Fei
  • Chemical Society Reviews, Vol. 45, Issue 22
  • DOI: 10.1039/C6CS00173D

Designing high-voltage carbonyl-containing polycyclic aromatic hydrocarbon cathode materials for Li-ion batteries guided by Clar's theory
journal, January 2015

  • Wu, Dihua; Xie, Zhaojun; Zhou, Zhen
  • Journal of Materials Chemistry A, Vol. 3, Issue 37
  • DOI: 10.1039/C5TA05437K

Poly(5-amino-1,4-naphthoquinone), a Novel Lithium-Inserting Electroactive Polymer with High Specific Charge
journal, January 1999

  • Häringer, Daniel
  • Journal of The Electrochemical Society, Vol. 146, Issue 7
  • DOI: 10.1149/1.1391947

Factors affecting the battery performance of anthraquinone-based organic cathode materials
journal, January 2012

  • Xu, Wu; Read, Adam; Koech, Phillip K.
  • Journal of Materials Chemistry, Vol. 22, Issue 9
  • DOI: 10.1039/c2jm15764k

Powering up the Future: Radical Polymers for Battery Applications
journal, December 2012

  • Janoschka, Tobias; Hager, Martin D.; Schubert, Ulrich S.
  • Advanced Materials, Vol. 24, Issue 48
  • DOI: 10.1002/adma.201203119

Designed metalloprotein stabilizes a semiquinone radical
journal, February 2016

  • Ulas, Gözde; Lemmin, Thomas; Wu, Yibing
  • Nature Chemistry, Vol. 8, Issue 4
  • DOI: 10.1038/nchem.2453

Electrochemical Reduction of Quinones in Different Media: A Review
journal, January 2011

  • Guin, Partha Sarathi; Das, Saurabh; Mandal, P. C.
  • International Journal of Electrochemistry, Vol. 2011, Article No. 816202
  • DOI: 10.4061/2011/816202

Electronic and CD spectra of catecholate and semiquinonate adducts of zinc(II) and nickel(II) tetraazamacrocyclic complexes
journal, April 1989

  • Benelli, Cristiano; Dei, Andrea; Gatteschi, Dante
  • Inorganic Chemistry, Vol. 28, Issue 8
  • DOI: 10.1021/ic00307a012

In Situ EQCM Study Examining Irreversible Changes the Sulfur–Carbon Cathode in Lithium–Sulfur Batteries
journal, September 2015

  • Wu, Heng-Liang; Huff, Laura A.; Esbenshade, Jennifer L.
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 37
  • DOI: 10.1021/acsami.5b05955

    Works referencing / citing this record:

    Organic quinones towards advanced electrochemical energy storage: recent advances and challenges
    journal, January 2019

    • Han, Cuiping; Li, Hongfei; Shi, Ruiying
    • Journal of Materials Chemistry A, Vol. 7, Issue 41
    • DOI: 10.1039/c9ta05252f