Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface
- Univ. of Waterloo, ON (Canada). Dept. of Chemistry and Waterloo Inst. for Nanotechnology
- Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). The Molecular Foundry; Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
- Univ. of Waterloo, ON (Canada). Dept. of Chemistry and Waterloo Inst. for Nanotechnology; Argonne National Lab. (ANL), Argonne, IL (United States). Joint Center for Energy Storage Research (JCESR)
Zinc ion batteries using metallic zinc as the negative electrode have gained considerable interest for electrochemical energy storage, whose development is crucial for the adoption of renewable energy technologies, as zinc has a very high volumetric capacity (5845 mA h cm-3), is inexpensive and compatible with aqueous electrolytes. However, the divalent charge of zinc ions, which restricts the choice of host material due to hindered solid-state diffusion, can also pose a problem for interfacial charge transfer. We report our findings on reversible intercalation of up to two Zn2+ ions in layered V3O7·H2O. This material exhibits very high capacity and power (375 mA h g-1 at a 1C rate, and 275 mA h g-1 at an 8C rate) in an aqueous electrolyte compared to a very low capacity and slow rate capabilities in a nonaqueous medium. Operando XRD studies, together with impedance analysis, reveal solid solution behavior associated with Zn2+-ion diffusion within a water monolayer in the interlayer gap in both systems, but very sluggish interfacial charge transfer in the nonaqueous electrolyte. This points to desolvation at the interface as a major factor in dictating the kinetics. Temperature dependent impedance studies show high activation energies associated with the nonaqueous charge transfer process, identifying the origin of poor electrochemical performance.
- Research Organization:
- Univ. of Waterloo, ON (Canada); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
- Sponsoring Organization:
- USDOE Office of Science (SC), Basic Energy Sciences (BES); Natural Sciences and Engineering Research Council of Canada (NSERC)
- Grant/Contract Number:
- AC02-06CH11357; AC02-05CH11231
- OSTI ID:
- 1469689
- Journal Information:
- Energy & Environmental Science, Vol. 11, Issue 4; ISSN 1754-5692
- Publisher:
- Royal Society of ChemistryCopyright Statement
- Country of Publication:
- United States
- Language:
- English
Web of Science
Similar Records
Nanocellulose-Carboxymethylcellulose Electrolyte for Stable, High-Rate Zinc-Ion Batteries
Synergistically Stabilizing Zinc Anodes by Molybdenum Dioxide Coating and Tween 80 Electrolyte Additive for High-Performance Aqueous Zinc-Ion Batteries