DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Interface engineering of colloidal CdSe quantum dots thin films as acid-stable photocathodes for solar-driven hydrogen evolution

Abstract

Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm2 (AM1.5G, 100 mW/cm2) at a potential of 0 V vs. RHE (j0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j0 of -2.14 mA/cm2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when themore » less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.« less

Authors:
 [1];  [2];  [1];  [1]; ORCiD logo [3];  [4];  [1];  [1];  [5];  [1];  [1];  [2];  [1]
  1. Wake Forest Univ., Winston-Salem, NC (United States)
  2. Harbin Institute of Technology, Shenzhen (China)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  4. IBM TJ Watson Research Center, Yorktown Heights, NY (United States)
  5. Soochow Univ., Jiangsu (China)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1436031
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 10; Journal Issue: 20; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; interface engineering; colloidal quantum dots; atomic layer deposition; photocathode; hydrogen evolution

Citation Formats

Li, Hui, Wen, Peng, Hoxie, Adam, Dun, Chaochao, Adhikari, Shiba P., Li, Qi, Lu, Chang, Itanze, Dominique, Jiang, Lin, Carroll, David L., Lachgar, Abdou, Qiu, Yejun, and Geyer, Scott. Interface engineering of colloidal CdSe quantum dots thin films as acid-stable photocathodes for solar-driven hydrogen evolution. United States: N. p., 2018. Web. doi:10.1021/acsami.7b19229.
Li, Hui, Wen, Peng, Hoxie, Adam, Dun, Chaochao, Adhikari, Shiba P., Li, Qi, Lu, Chang, Itanze, Dominique, Jiang, Lin, Carroll, David L., Lachgar, Abdou, Qiu, Yejun, & Geyer, Scott. Interface engineering of colloidal CdSe quantum dots thin films as acid-stable photocathodes for solar-driven hydrogen evolution. United States. https://doi.org/10.1021/acsami.7b19229
Li, Hui, Wen, Peng, Hoxie, Adam, Dun, Chaochao, Adhikari, Shiba P., Li, Qi, Lu, Chang, Itanze, Dominique, Jiang, Lin, Carroll, David L., Lachgar, Abdou, Qiu, Yejun, and Geyer, Scott. Mon . "Interface engineering of colloidal CdSe quantum dots thin films as acid-stable photocathodes for solar-driven hydrogen evolution". United States. https://doi.org/10.1021/acsami.7b19229. https://www.osti.gov/servlets/purl/1436031.
@article{osti_1436031,
title = {Interface engineering of colloidal CdSe quantum dots thin films as acid-stable photocathodes for solar-driven hydrogen evolution},
author = {Li, Hui and Wen, Peng and Hoxie, Adam and Dun, Chaochao and Adhikari, Shiba P. and Li, Qi and Lu, Chang and Itanze, Dominique and Jiang, Lin and Carroll, David L. and Lachgar, Abdou and Qiu, Yejun and Geyer, Scott},
abstractNote = {Colloidal semiconductor quantum dots-based (CQD) photocathodes for solar-driven hydrogen evolution have attracted significant attention due to their tunable size, nanostructured morphology, crystalline orientation, and band-gap. Here, we report a thin film heterojunction photocathode composed of organic PEDOT:PSS as a hole transport layer, CdSe CQDs as a semiconductor light absorber, and conformal Pt layer deposited by atomic layer deposition (ALD) serving as both a passivation layer and cocatalyst for hydrogen evolution. In neutral aqueous solution, a PEDOT:PSS/CdSe/Pt heterogeneous photocathode with 200 cycles of ALD Pt produces a photocurrent density of -1.08 mA/cm2 (AM1.5G, 100 mW/cm2) at a potential of 0 V vs. RHE (j0) in neutral aqueous solution, which is nearly 12 times that of the pristine CdSe photocathode. This composite photocathode shows an onset potential for water reduction at +0.46 V vs. RHE and long-term stability with negligible degradation. In acidic electrolyte (pH = 1), where the hydrogen evolution reaction is more favorable but stability is limited due to photocorrosion, a thicker Pt film (300 cycles) is shown to greatly improve the device stability and a j0 of -2.14 mA/cm2 is obtained with only 8.3% activity degradation after 6 h, compared to 80% degradation under the same conditions when the less conformal electrodeposition method is used to deposit the Pt layer. Electrochemical impedance spectroscopy and time-resolved photoluminescence results indicate that these enhancements stem from a lower bulk charge recombination rate, higher interfacial charge transfer rate, and faster reaction kinetics. In conclusion, we believe that these interface engineering strategies can be extended to other colloidal semiconductors to construct more efficient and stable heterogeneous photoelectrodes for solar fuel production.},
doi = {10.1021/acsami.7b19229},
journal = {ACS Applied Materials and Interfaces},
number = 20,
volume = 10,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 4 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Solar Water Splitting Cells
journal, November 2010

  • Walter, Michael G.; Warren, Emily L.; McKone, James R.
  • Chemical Reviews, Vol. 110, Issue 11, p. 6446-6473
  • DOI: 10.1021/cr1002326

Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting
journal, January 2013


Forming Heterojunctions at the Nanoscale for Improved Photoelectrochemical Water Splitting by Semiconductor Materials: Case Studies on Hematite
journal, February 2013

  • Mayer, Matthew T.; Lin, Yongjing; Yuan, Guangbi
  • Accounts of Chemical Research, Vol. 46, Issue 7
  • DOI: 10.1021/ar300302z

Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting
journal, January 2014

  • Hisatomi, Takashi; Kubota, Jun; Domen, Kazunari
  • Chem. Soc. Rev., Vol. 43, Issue 22
  • DOI: 10.1039/c3cs60378d

An analysis of the optimal band gaps of light absorbers in integrated tandem photoelectrochemical water-splitting systems
journal, January 2013

  • Hu, Shu; Xiang, Chengxiang; Haussener, Sophia
  • Energy & Environmental Science, Vol. 6, Issue 10
  • DOI: 10.1039/c3ee40453f

Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes
journal, January 2013

  • Barroso, Monica; Pendlebury, Stephanie R.; Cowan, Alexander J.
  • Chemical Science, Vol. 4, Issue 7
  • DOI: 10.1039/c3sc50496d

Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity
journal, December 2013


Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces
journal, April 2014

  • Yang, Jinhui; Walczak, Karl; Anzenberg, Eitan
  • Journal of the American Chemical Society, Vol. 136, Issue 17
  • DOI: 10.1021/ja501513t

Heterostructure of Si and CoSe 2 : A Promising Photocathode Based on a Non-noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution
journal, April 2015

  • Basu, Mrinmoyee; Zhang, Zhi-Wei; Chen, Chih-Jung
  • Angewandte Chemie International Edition, Vol. 54, Issue 21
  • DOI: 10.1002/anie.201502573

Synergistic Cocatalytic Effect of Carbon Nanodots and Co 3 O 4 Nanoclusters for the Photoelectrochemical Water Oxidation on Hematite
journal, March 2016

  • Zhang, Peng; Wang, Tuo; Chang, Xiaoxia
  • Angewandte Chemie International Edition, Vol. 55, Issue 19
  • DOI: 10.1002/anie.201600918

Ultrasmall CoO(OH) x Nanoparticles As a Highly Efficient “True” Cocatalyst in Porous Photoanodes for Water Splitting
journal, June 2017


p-Type InP Nanopillar Photocathodes for Efficient Solar-Driven Hydrogen Production
journal, September 2012

  • Lee, Min Hyung; Takei, Kuniharu; Zhang, Junjun
  • Angewandte Chemie International Edition, Vol. 51, Issue 43
  • DOI: 10.1002/anie.201203174

Sputtered NiO x Films for Stabilization of p + n-InP Photoanodes for Solar-Driven Water Oxidation
journal, March 2015

  • Sun, Ke; Kuang, Yanjin; Verlage, Erik
  • Advanced Energy Materials, Vol. 5, Issue 11
  • DOI: 10.1002/aenm.201402276

Artificial Photosynthesis on TiO 2 -Passivated InP Nanopillars
journal, August 2015


The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices
journal, September 2013

  • Kramer, Illan J.; Sargent, Edward H.
  • Chemical Reviews, Vol. 114, Issue 1
  • DOI: 10.1021/cr400299t

Size-Dependent Photovoltaic Performance of CuInS 2 Quantum Dot-Sensitized Solar Cells
journal, November 2014

  • Jara, Danilo H.; Yoon, Seog Joon; Stamplecoskie, Kevin G.
  • Chemistry of Materials, Vol. 26, Issue 24
  • DOI: 10.1021/cm5040886

Colloidal Quantum Dot Solar Cells
journal, June 2015


Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells
journal, November 2010

  • Nozik, A. J.; Beard, M. C.; Luther, J. M.
  • Chemical Reviews, Vol. 110, Issue 11
  • DOI: 10.1021/cr900289f

Comparing Multiple Exciton Generation in Quantum Dots To Impact Ionization in Bulk Semiconductors: Implications for Enhancement of Solar Energy Conversion
journal, August 2010

  • Beard, Matthew C.; Midgett, Aaron G.; Hanna, Mark C.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101490z

Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots
journal, January 2018


Double-Sided CdS and CdSe Quantum Dot Co-Sensitized ZnO Nanowire Arrays for Photoelectrochemical Hydrogen Generation
journal, March 2010

  • Wang, Gongming; Yang, Xunyu; Qian, Fang
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl100250z

Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting
journal, July 2010

  • Chen, Hao Ming; Chen, Chih Kai; Chang, Yu-Chuan
  • Angewandte Chemie, Vol. 122, Issue 34
  • DOI: 10.1002/ange.201001827

Quantum Dot Based Heterostructures for Unassisted Photoelectrochemical Hydrogen Generation
journal, September 2012

  • Rodenas, Pau; Song, Taesup; Sudhagar, Pitchaimuthu
  • Advanced Energy Materials, Vol. 3, Issue 2
  • DOI: 10.1002/aenm.201200255

Highly Efficient and Stable Cadmium Chalcogenide Quantum Dot/ZnO Nanowires for Photoelectrochemical Hydrogen Generation
journal, December 2012

  • Seol, Minsu; Jang, Ji-Wook; Cho, Seungho
  • Chemistry of Materials, Vol. 25, Issue 2
  • DOI: 10.1021/cm303206s

Hole Removal Rate Limits Photodriven H 2 Generation Efficiency in CdS-Pt and CdSe/CdS-Pt Semiconductor Nanorod–Metal Tip Heterostructures
journal, May 2014

  • Wu, Kaifeng; Chen, Zheyuan; Lv, Hongjin
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja5023893

Efficient and Limiting Reactions in Aqueous Light-Induced Hydrogen Evolution Systems using Molecular Catalysts and Quantum Dots
journal, May 2014

  • Gimbert-Suriñach, Carolina; Albero, Josep; Stoll, Thibaut
  • Journal of the American Chemical Society, Vol. 136, Issue 21
  • DOI: 10.1021/ja501489h

Quantum Dot Solar Cells: Hole Transfer as a Limiting Factor in Boosting the Photoconversion Efficiency
journal, March 2014

  • Kamat, Prashant V.; Christians, Jeffrey A.; Radich, James G.
  • Langmuir, Vol. 30, Issue 20
  • DOI: 10.1021/la500555w

Hole Transfer Dynamics from a CdSe/CdS Quantum Rod to a Tethered Ferrocene Derivative
journal, March 2014

  • Tarafder, Kartick; Surendranath, Yogesh; Olshansky, Jacob H.
  • Journal of the American Chemical Society, Vol. 136, Issue 13
  • DOI: 10.1021/ja500936n

Hole Transfer from Photoexcited Quantum Dots: The Relationship between Driving Force and Rate
journal, December 2015

  • Olshansky, Jacob H.; Ding, Tina X.; Lee, Youjin V.
  • Journal of the American Chemical Society, Vol. 137, Issue 49
  • DOI: 10.1021/jacs.5b10856

Efficiency of Hole Transfer from Photoexcited Quantum Dots to Covalently Linked Molecular Species
journal, January 2015

  • Ding, Tina X.; Olshansky, Jacob H.; Leone, Stephen R.
  • Journal of the American Chemical Society, Vol. 137, Issue 5
  • DOI: 10.1021/ja512278a

Photoelectrochemical Generation of Hydrogen from Water Using a CdSe Quantum Dot-Sensitized Photocathode
journal, March 2015

  • Ruberu, T. Purnima A.; Dong, Yuming; Das, Amit
  • ACS Catalysis, Vol. 5, Issue 4
  • DOI: 10.1021/cs5021035

Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production
journal, March 2016

  • Li, Jian; Gao, Xin; Liu, Bin
  • Journal of the American Chemical Society, Vol. 138, Issue 12
  • DOI: 10.1021/jacs.5b12758

Photoconductivity of PbSe Quantum-Dot Solids: Dependence on Ligand Anchor Group and Length
journal, October 2012

  • Gao, Yunan; Aerts, Michiel; Sandeep, C. S. Suchand
  • ACS Nano, Vol. 6, Issue 11
  • DOI: 10.1021/nn3029716

Record Charge Carrier Diffusion Length in Colloidal Quantum Dot Solids via Mutual Dot-To-Dot Surface Passivation
journal, April 2015

  • Carey, Graham H.; Levina, Larissa; Comin, Riccardo
  • Advanced Materials, Vol. 27, Issue 21
  • DOI: 10.1002/adma.201405782

Colloidal quantum dot ligand engineering for high performance solar cells
journal, January 2016

  • Wang, Ruili; Shang, Yuequn; Kanjanaboos, Pongsakorn
  • Energy & Environmental Science, Vol. 9, Issue 4
  • DOI: 10.1039/c5ee03887a

Removal and Utilization of Capping Agents in Nanocatalysis
journal, September 2013

  • Niu, Zhiqiang; Li, Yadong
  • Chemistry of Materials, Vol. 26, Issue 1
  • DOI: 10.1021/cm4022479

Efficient Removal of Organic Ligands from Supported Nanocrystals by Fast Thermal Annealing Enables Catalytic Studies on Well-Defined Active Phases
journal, May 2015

  • Cargnello, Matteo; Chen, Chen; Diroll, Benjamin T.
  • Journal of the American Chemical Society, Vol. 137, Issue 21
  • DOI: 10.1021/jacs.5b03333

Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange
journal, May 2014

  • Brown, Patrick R.; Kim, Donghun; Lunt, Richard R.
  • ACS Nano, Vol. 8, Issue 6
  • DOI: 10.1021/nn500897c

Controlling the Trap State Landscape of Colloidal CdSe Nanocrystals with Cadmium Halide Ligands
journal, January 2015

  • Greaney, Matthew J.; Couderc, Elsa; Zhao, Jing
  • Chemistry of Materials, Vol. 27, Issue 3
  • DOI: 10.1021/cm503529j

Multiple exciton generation for photoelectrochemical hydrogen evolution reactions with quantum yields exceeding 100%
journal, April 2017


Organic–Inorganic Hybrid Solution-Processed H 2 -Evolving Photocathodes
journal, August 2015

  • Lai, Lai-Hung; Gomulya, Widianta; Berghuis, Matthijs
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 34
  • DOI: 10.1021/acsami.5b04550

Semiconducting materials for photoelectrochemical energy conversion
journal, January 2016


Energetics at the Surface of Photoelectrodes and Its Influence on the Photoelectrochemical Properties
journal, September 2015


Highly active oxide photocathode for photoelectrochemical water reduction
journal, May 2011

  • Paracchino, Adriana; Laporte, Vincent; Sivula, Kevin
  • Nature Materials, Vol. 10, Issue 6
  • DOI: 10.1038/nmat3017

Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation
journal, June 2011

  • Chen, Yi Wei; Prange, Jonathan D.; Dühnen, Simon
  • Nature Materials, Vol. 10, Issue 7
  • DOI: 10.1038/nmat3047

Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation
journal, May 2014


Extremely Stable Platinum Nanoparticles Encapsulated in a Zirconia Nanocage by Area-Selective Atomic Layer Deposition for the Oxygen Reduction Reaction
journal, November 2014

  • Cheng, Niancai; Banis, Mohammad Norouzi; Liu, Jian
  • Advanced Materials, Vol. 27, Issue 2
  • DOI: 10.1002/adma.201404314

Oxide-Nanotrap-Anchored Platinum Nanoparticles with High Activity and Sintering Resistance by Area-Selective Atomic Layer Deposition
journal, January 2017


Facile Synthesis of Three-Dimensional Pt-TiO 2 Nano-networks: A Highly Active Catalyst for the Hydrolytic Dehydrogenation of Ammonia-Borane
journal, September 2016

  • Khalily, Mohammad Aref; Eren, Hamit; Akbayrak, Serdar
  • Angewandte Chemie, Vol. 128, Issue 40
  • DOI: 10.1002/ange.201605577

A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition
journal, April 2016


Atomic Layer Deposition of Platinum Catalysts on Nanowire Surfaces for Photoelectrochemical Water Reduction
journal, August 2013

  • Dasgupta, Neil P.; Liu, Chong; Andrews, Sean
  • Journal of the American Chemical Society, Vol. 135, Issue 35
  • DOI: 10.1021/ja405680p

Solar Hydrogen Generation by Silicon Nanowires Modified with Platinum Nanoparticle Catalysts by Atomic Layer Deposition
journal, September 2013

  • Dai, Pengcheng; Xie, Jin; Mayer, Matthew T.
  • Angewandte Chemie, Vol. 125, Issue 42
  • DOI: 10.1002/ange.201303813

Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites
journal, September 1993

  • Murray, C. B.; Norris, D. J.; Bawendi, M. G.
  • Journal of the American Chemical Society, Vol. 115, Issue 19, p. 8706-8715
  • DOI: 10.1021/ja00072a025

Electrochemical properties of CdSe and CdTe quantum dots
journal, January 2012

  • Amelia, Matteo; Lincheneau, Christophe; Silvi, Serena
  • Chemical Society Reviews, Vol. 41, Issue 17
  • DOI: 10.1039/c2cs35117j

Structural evolution of platinum thin films grown by atomic layer deposition
journal, August 2014

  • Geyer, Scott M.; Methaapanon, Rungthiwa; Johnson, Richard
  • Journal of Applied Physics, Vol. 116, Issue 6
  • DOI: 10.1063/1.4892104

Cu 2 O Nanowire Photocathodes for Efficient and Durable Solar Water Splitting
journal, February 2016


A p-Si/NiCoSe x core/shell nanopillar array photocathode for enhanced photoelectrochemical hydrogen production
journal, January 2016

  • Zhang, Hongxiu; Ding, Qi; He, Denghong
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/c6ee02215d

Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe−TiO 2 Architecture
journal, March 2008

  • Kongkanand, Anusorn; Tvrdy, Kevin; Takechi, Kensuke
  • Journal of the American Chemical Society, Vol. 130, Issue 12
  • DOI: 10.1021/ja0782706

Charge Transfer in the Heterointerfaces of CdS/CdSe Cosensitized TiO 2 Photoelectrode
journal, December 2011

  • Lin, Kung-Hsuan; Chuang, Cho-Ying; Lee, Yu-Yang
  • The Journal of Physical Chemistry C, Vol. 116, Issue 1
  • DOI: 10.1021/jp209353j

Works referencing / citing this record:

Strategies for Semiconductor/Electrocatalyst Coupling toward Solar‐Driven Water Splitting
journal, March 2020

  • Thalluri, Sitaramanjaneya Mouli; Bai, Lichen; Lv, Cuncai
  • Advanced Science, Vol. 7, Issue 6
  • DOI: 10.1002/advs.201902102