skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene

Abstract

In this study, we demonstrate the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. Lastly, the WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4];  [5]
  1. Sejong Univ., Seoul (South Korea)
  2. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  3. Pohang University of Science and Technology (POSTECH) (South Korea)
  4. Sejong Univ., Seoul (South Korea); Hokkaido University, Sapporo (Japan)
  5. Hokkaido University, Sapporo (Japan)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC). Basic Energy Sciences (BES) (SC-22); USDOE Office of Science (SC), Basic Energy Sciences (BES) (SC-22)
OSTI Identifier:
1469552
Alternate Identifier(s):
OSTI ID: 1494482
Report Number(s):
LA-UR-18-22597; LA-UR-18-29544
Journal ID: ISSN 0003-6951
Grant/Contract Number:  
AC52-06NA25396; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 112; Journal Issue: 14; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science

Citation Formats

Choi, Ji Eun, Yoo, Jinkyoung, Lee, Donghwa, Hong, Young Joon, and Fukui, Takashi. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene. United States: N. p., 2018. Web. doi:10.1063/1.5017251.
Choi, Ji Eun, Yoo, Jinkyoung, Lee, Donghwa, Hong, Young Joon, & Fukui, Takashi. Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene. United States. doi:10.1063/1.5017251.
Choi, Ji Eun, Yoo, Jinkyoung, Lee, Donghwa, Hong, Young Joon, and Fukui, Takashi. Mon . "Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene". United States. doi:10.1063/1.5017251. https://www.osti.gov/servlets/purl/1469552.
@article{osti_1469552,
title = {Crystal-phase intergradation in InAs nanostructures grown by van der Waals heteroepitaxy on graphene},
author = {Choi, Ji Eun and Yoo, Jinkyoung and Lee, Donghwa and Hong, Young Joon and Fukui, Takashi},
abstractNote = {In this study, we demonstrate the crystal-phase intergradation of InAs nanostructures grown on graphene via van der Waals epitaxy. InAs nanostructures with diverse diameters are yielded on graphene. High-resolution transmission electron microscopy (HR-TEM) reveals two crystallographic features of (i) wurtzite (WZ)-to-zinc blende (ZB) intergradation along the growth direction of InAs nanostructures and (ii) an increased mean fraction of ZB according to diameter increment. Based on the HR-TEM observations, a crystal-phase intergradation diagram is depicted. We discuss how the formation of a WZ-rich phase during the initial growth stage is an effective way of releasing heterointerfacial stress endowed by the lattice mismatch of InAs/graphene for energy minimization in terms of less in-plane lattice mismatching between WZ-InAs and graphene. Lastly, the WZ-to-ZB evolution is responsible for the attenuation of the bottom-to-top surface charge interaction as growth proceeds.},
doi = {10.1063/1.5017251},
journal = {Applied Physics Letters},
number = 14,
volume = 112,
place = {United States},
year = {2018},
month = {4}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 2 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Effects of Crystal Phase Mixing on the Electrical Properties of InAs Nanowires
journal, June 2011

  • Thelander, Claes; Caroff, Philippe; Plissard, Sébastien
  • Nano Letters, Vol. 11, Issue 6
  • DOI: 10.1021/nl2008339

Control of InAs Nanowire Growth Directions on Si
journal, October 2008

  • Tomioka, Katsuhiro; Motohisa, Junichi; Hara, Shinjiroh
  • Nano Letters, Vol. 8, Issue 10
  • DOI: 10.1021/nl802398j

Van der Waals Epitaxial Double Heterostructure: InAs/Single-Layer Graphene/InAs
journal, September 2013

  • Hong, Young Joon; Yang, Jae Won; Lee, Wi Hyoung
  • Advanced Materials, Vol. 25, Issue 47
  • DOI: 10.1002/adma.201302312

Selective-Area Epitaxy of Pure Wurtzite InP Nanowires: High Quantum Efficiency and Room-Temperature Lasing
journal, August 2014

  • Gao, Qian; Saxena, Dhruv; Wang, Fan
  • Nano Letters, Vol. 14, Issue 9
  • DOI: 10.1021/nl5021409

Monolithic III-V Nanowire Solar Cells on Graphene via Direct van der Waals Epitaxy
journal, March 2014

  • Mohseni, Parsian K.; Behnam, Ashkan; Wood, Joshua D.
  • Advanced Materials, Vol. 26, Issue 22
  • DOI: 10.1002/adma.201305909

Crystal Phase Quantum Well Emission with Digital Control
journal, September 2017


The Role of Surface Energies and Chemical Potential during Nanowire Growth
journal, March 2011

  • Algra, Rienk E.; Verheijen, Marcel A.; Feiner, Lou-Fé
  • Nano Letters, Vol. 11, Issue 3
  • DOI: 10.1021/nl104267p

From Twinning to Pure Zincblende Catalyst-Free InAs(Sb) Nanowires
journal, December 2015


Flexible Inorganic Nanostructure Light-Emitting Diodes Fabricated on Graphene Films
journal, September 2011

  • Lee, Chul-Ho; Kim, Yong-Jin; Hong, Young Joon
  • Advanced Materials, Vol. 23, Issue 40
  • DOI: 10.1002/adma.201102407

An Empirical Potential Approach to Wurtzite-Zinc-Blende Polytypism in Group III-V Semiconductor Nanowires
journal, February 2006

  • Akiyama, Toru; Sano, Kosuke; Nakamura, Kohji
  • Japanese Journal of Applied Physics, Vol. 45, Issue No. 9
  • DOI: 10.1143/JJAP.45.L275

Phase Perfection in Zinc Blende and Wurtzite III−V Nanowires Using Basic Growth Parameters
journal, March 2010

  • Joyce, Hannah J.; Wong-Leung, Jennifer; Gao, Qiang
  • Nano Letters, Vol. 10, Issue 3
  • DOI: 10.1021/nl903688v

Twinning superlattices in indium phosphide nanowires
journal, November 2008

  • Algra, Rienk E.; Verheijen, Marcel A.; Borgström, Magnus T.
  • Nature, Vol. 456, Issue 7220
  • DOI: 10.1038/nature07570

van der Waals Epitaxy of InAs Nanowires Vertically Aligned on Single-Layer Graphene
journal, February 2012

  • Hong, Young Joon; Lee, Wi Hyoung; Wu, Yaping
  • Nano Letters, Vol. 12, Issue 3
  • DOI: 10.1021/nl204109t

Polytypism of GaAs, InP, InAs, and InSb: An ab initio study
journal, August 2011


Single-crystalline kinked semiconductor nanowire superstructures
journal, October 2009

  • Tian, Bozhi; Xie, Ping; Kempa, Thomas J.
  • Nature Nanotechnology, Vol. 4, Issue 12
  • DOI: 10.1038/nnano.2009.304

Growth thermodynamics of nanowires and its application to polytypism of zinc blende III-V nanowires
journal, January 2008


Mobility Enhancement by Sb-mediated Minimisation of Stacking Fault Density in InAs Nanowires Grown on Silicon
journal, February 2014

  • Sourribes, Marion J. L.; Isakov, Ivan; Panfilova, Marina
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl5001554

Why Does Wurtzite Form in Nanowires of III-V Zinc Blende Semiconductors?
journal, October 2007


Controlled van der Waals Heteroepitaxy of InAs Nanowires on Carbon Honeycomb Lattices
journal, August 2011


Flexible GaN Light-Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots
journal, June 2016

  • Chung, Kunook; Yoo, Hyobin; Hyun, Jerome K.
  • Advanced Materials, Vol. 28, Issue 35
  • DOI: 10.1002/adma.201601894

Effect of V/III ratio on the structural and optical properties of self-catalysed GaAs nanowires
journal, September 2016


Controlled polytypic and twin-plane superlattices in iii–v nanowires
journal, November 2008


Vertically aligned ZnO nanostructures grown on graphene layers
journal, November 2009

  • Kim, Yong-Jin; Lee, Jae-Hyun; Yi, Gyu-Chul
  • Applied Physics Letters, Vol. 95, Issue 21
  • DOI: 10.1063/1.3266836

Position- and Morphology-Controlled ZnO Nanostructures Grown on Graphene Layers
journal, August 2012


Carrier Dynamics and Quantum Confinement in type II ZB-WZ InP Nanowire Homostructures
journal, February 2009

  • Pemasiri, Kuranananda; Montazeri, Mohammad; Gass, Richard
  • Nano Letters, Vol. 9, Issue 2
  • DOI: 10.1021/nl802997p

Interface dynamics and crystal phase switching in GaAs nanowires
journal, March 2016

  • Jacobsson, Daniel; Panciera, Federico; Tersoff, Jerry
  • Nature, Vol. 531, Issue 7594
  • DOI: 10.1038/nature17148

Growth temperature and V/III ratio effects on the morphology and crystal structure of InP nanowires
journal, October 2010


Tunable Catalytic Alloying Eliminates Stacking Faults in Compound Semiconductor Nanowires
journal, January 2012

  • Heo, Hoseok; Kang, Kibum; Lee, Donghun
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203900q

Controlled Synthesis of Phase-Pure InAs Nanowires on Si(111) by Diminishing the Diameter to 10 nm
journal, February 2014

  • Pan, Dong; Fu, Mengqi; Yu, Xuezhe
  • Nano Letters, Vol. 14, Issue 3
  • DOI: 10.1021/nl4040847

Combinatorial Approaches to Understanding Polytypism in III–V Nanowires
journal, June 2012

  • Johansson, Jonas; Bolinsson, Jessica; Ek, Martin
  • ACS Nano, Vol. 6, Issue 7
  • DOI: 10.1021/nn301477x

Gibbs–Thomson Effect in Planar Nanowires: Orientation and Doping Modulated Growth
journal, June 2016


III−V Nanowire Growth Mechanism:  V/III Ratio and Temperature Effects
journal, August 2007

  • Dayeh, Shadi A.; Yu, Edward T.; Wang, Deli
  • Nano Letters, Vol. 7, Issue 8
  • DOI: 10.1021/nl0712668

In x Ga 1– x As Nanowire Growth on Graphene: van der Waals Epitaxy Induced Phase Segregation
journal, February 2013

  • Mohseni, Parsian K.; Behnam, Ashkan; Wood, Joshua D.
  • Nano Letters, Vol. 13, Issue 3
  • DOI: 10.1021/nl304569d

Unit Cell Structure of Crystal Polytypes in InAs and InSb Nanowires
journal, April 2011

  • Kriegner, Dominik; Panse, Christian; Mandl, Bernhard
  • Nano Letters, Vol. 11, Issue 4
  • DOI: 10.1021/nl1041512

Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system
journal, August 1992


Crystal Phase Engineering in Single InAs Nanowires
journal, September 2010

  • Dick, Kimberly A.; Thelander, Claes; Samuelson, Lars
  • Nano Letters, Vol. 10, Issue 9
  • DOI: 10.1021/nl101632a

Vertically Aligned GaAs Nanowires on Graphite and Few-Layer Graphene: Generic Model and Epitaxial Growth
journal, January 2012

  • Munshi, A. Mazid; Dheeraj, Dasa L.; Fauske, Vidar T.
  • Nano Letters, Vol. 12, Issue 9
  • DOI: 10.1021/nl3018115

Metastable Growth of Pure Wurtzite InGaAs Microstructures
journal, July 2014

  • Ng, Kar Wei; Ko, Wai Son; Lu, Fanglu
  • Nano Letters, Vol. 14, Issue 8
  • DOI: 10.1021/nl501887f