DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries

Abstract

The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV under 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects inmore » the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).« less

Authors:
 [1];  [1]
  1. Univ. of Washington, Seattle, WA (United States)
Publication Date:
Research Org.:
Univ. of Washington, Seattle, WA (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
Contributing Org.:
Clean Energy Institute
OSTI Identifier:
1343430
Report Number(s):
DOE-UW-Braly Hillhouse-1
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
EE0006710
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 120; Journal Issue: 2; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
14 SOLAR ENERGY; Hybrid Perovskites; High bandgap; Photoluminescence

Citation Formats

Braly, Ian L., and Hillhouse, Hugh W. Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries. United States: N. p., 2015. Web. doi:10.1021/acs.jpcc.5b10728.
Braly, Ian L., & Hillhouse, Hugh W. Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries. United States. https://doi.org/10.1021/acs.jpcc.5b10728
Braly, Ian L., and Hillhouse, Hugh W. Tue . "Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries". United States. https://doi.org/10.1021/acs.jpcc.5b10728. https://www.osti.gov/servlets/purl/1343430.
@article{osti_1343430,
title = {Optoelectronic Quality and Stability of Hybrid Perovskites from MAPbI 3 to MAPbI 2 Br Using Composition Spread Libraries},
author = {Braly, Ian L. and Hillhouse, Hugh W.},
abstractNote = {The development of stable high-bandgap hybrid perovskites (HPs) with high optoelectronic quality may enable tandem solar cells with power conversion efficiencies approaching 30%. The halide composition of HPs has been observed to effect bandgap, carrier lifetime, and material stability. Here we report optoelectronic quality and stability under illumination of thousands of compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide (CH3NH3PbI2Br). Hyperspectral maps of steady-state absolute intensity photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS) at each point after synthesis. The QFLS upon first illumination increases with bandgap and reaches a maximum of 1.27 eV under 1 sun illumination intensity for a bandgap of 1.75 eV. However, the optoelectronic quality (χ), defined as the ratio of the QFLS to the maximum theoretical QFLS for bandgap, decreases with bandgap from around 88% for 1.60 eV bandgap down to 82% for 1.84 eV bandgap. Further, we show that a reversible light induced defect forms that reduces the optoelectronic quality, particularly for high-bandgap materials. Composition analysis shows that the halide to lead ratio, (I + Br)/Pb, decreases from 3 for the pure iodide to 2.5 for the diiodomonobromide, suggesting a role of halide vacancies or halide substitution defects in the light-induced instability for this synthesis route. Even with the light-induced defect, a stable QFLS of about 1.17 eV is possible. Comparing our QFLS to Voc values from HP devices reported in the literature indicates that higher open circuit voltages are possible but may require optimization of band alignment. Further, the spectral shape of the PL emission is found to be more commensurate with Franz–Keldysh broadening from local electric fields or from a screened Thomas–Fermi density of states (as opposed to a joint density of states due to Urbach disorder).},
doi = {10.1021/acs.jpcc.5b10728},
journal = {Journal of Physical Chemistry. C},
number = 2,
volume = 120,
place = {United States},
year = {Tue Dec 22 00:00:00 EST 2015},
month = {Tue Dec 22 00:00:00 EST 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 57 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

The emergence of perovskite solar cells
journal, July 2014

  • Green, Martin A.; Ho-Baillie, Anita; Snaith, Henry J.
  • Nature Photonics, Vol. 8, Issue 7, p. 506-514
  • DOI: 10.1038/nphoton.2014.134

Organolead Halide Perovskite: New Horizons in Solar Cell Research
journal, February 2014

  • Kim, Hui-Seon; Im, Sang Hyuk; Park, Nam-Gyu
  • The Journal of Physical Chemistry C, Vol. 118, Issue 11, p. 5615-5625
  • DOI: 10.1021/jp409025w

Highly efficient planar perovskite solar cells through band alignment engineering
journal, January 2015

  • Correa Baena, Juan Pablo; Steier, Ludmilla; Tress, Wolfgang
  • Energy & Environmental Science, Vol. 8, Issue 10
  • DOI: 10.1039/C5EE02608C

Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber
journal, October 2013

  • Stranks, S. D.; Eperon, G. E.; Grancini, G.
  • Science, Vol. 342, Issue 6156, p. 341-344
  • DOI: 10.1126/science.1243982

Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites
journal, September 2014

  • Noel, Nakita K.; Abate, Antonio; Stranks, Samuel D.
  • ACS Nano, Vol. 8, Issue 10
  • DOI: 10.1021/nn5036476

Organic–Inorganic Halide Perovskites: Perspectives for Silicon-Based Tandem Solar Cells
journal, November 2014


Semi-transparent perovskite solar cells for tandems with silicon and CIGS
journal, January 2015

  • Bailie, Colin D.; Christoforo, M. Greyson; Mailoa, Jonathan P.
  • Energy & Environmental Science, Vol. 8, Issue 3
  • DOI: 10.1039/C4EE03322A

Perovskite-kesterite monolithic tandem solar cells with high open-circuit voltage
journal, October 2014

  • Todorov, Teodor; Gershon, Talia; Gunawan, Oki
  • Applied Physics Letters, Vol. 105, Issue 17
  • DOI: 10.1063/1.4899275

Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells
journal, March 2013

  • Noh, Jun Hong; Im, Sang Hyuk; Heo, Jin Hyuck
  • Nano Letters, Vol. 13, Issue 4, p. 1764-1769
  • DOI: 10.1021/nl400349b

Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter‐wave spectroscopy
journal, December 1987

  • Poglitsch, A.; Weber, D.
  • The Journal of Chemical Physics, Vol. 87, Issue 11, p. 6373-6378
  • DOI: 10.1063/1.453467

Preparation of Single-Phase Films of CH 3 NH 3 Pb(I 1– x Br x ) 3 with Sharp Optical Band Edges
journal, July 2014

  • Sadhanala, Aditya; Deschler, Felix; Thomas, Tudor H.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 15
  • DOI: 10.1021/jz501332v

Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor
journal, January 2014

  • Ryu, Seungchan; Noh, Jun Hong; Jeon, Nam Joong
  • Energy Environ. Sci., Vol. 7, Issue 8
  • DOI: 10.1039/C4EE00762J

Recombination Study of Combined Halides (Cl, Br, I) Perovskite Solar Cells
journal, April 2014

  • Suarez, Belen; Gonzalez-Pedro, Victoria; Ripolles, Teresa S.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 10
  • DOI: 10.1021/jz5006797

High-Performance Planar-Heterojunction Solar Cells Based on Ternary Halide Large-Band-Gap Perovskites
journal, August 2014

  • Liang, Po-Wei; Chueh, Chu-Chen; Xin, Xu-Kai
  • Advanced Energy Materials, Vol. 5, Issue 1
  • DOI: 10.1002/aenm.201400960

Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics
journal, January 2015

  • Hoke, Eric T.; Slotcavage, Daniel J.; Dohner, Emma R.
  • Chemical Science, Vol. 6, Issue 1
  • DOI: 10.1039/C4SC03141E

Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells
journal, July 2014

  • Jeon, Nam Joong; Noh, Jun Hong; Kim, Young Chan
  • Nature Materials, Vol. 13, Issue 9, p. 897-903
  • DOI: 10.1038/nmat4014

High Open-Circuit Voltage Solar Cells Based on Organic–Inorganic Lead Bromide Perovskite
journal, March 2013

  • Edri, Eran; Kirmayer, Saar; Cahen, David
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 6, p. 897-902
  • DOI: 10.1021/jz400348q

Synthesis and Characterization of Organic−Inorganic Perovskite Thin Films Prepared Using a Versatile Two-Step Dipping Technique
journal, January 1998

  • Liang, Kangning; Mitzi, David B.; Prikas, Michael T.
  • Chemistry of Materials, Vol. 10, Issue 1, p. 403-411
  • DOI: 10.1021/cm970568f

Sequential deposition as a route to high-performance perovskite-sensitized solar cells
journal, July 2013

  • Burschka, Julian; Pellet, Norman; Moon, Soo-Jin
  • Nature, Vol. 499, Issue 7458, p. 316-319
  • DOI: 10.1038/nature12340

Transforming Hybrid Organic Inorganic Perovskites by Rapid Halide Exchange
journal, March 2015


Quasi-Fermi level splitting and sub-bandgap absorptivity from semiconductor photoluminescence
journal, November 2014

  • Katahara, John K.; Hillhouse, Hugh W.
  • Journal of Applied Physics, Vol. 116, Issue 17
  • DOI: 10.1063/1.4898346

The chemical potential of radiation
journal, June 1982


Some Thermodynamics of Photochemical Systems
journal, June 1967

  • Ross, Robert T.
  • The Journal of Chemical Physics, Vol. 46, Issue 12
  • DOI: 10.1063/1.1840606

Detailed Balance Limit of Efficiency of p‐n Junction Solar Cells
journal, March 1961

  • Shockley, William; Queisser, Hans J.
  • Journal of Applied Physics, Vol. 32, Issue 3, p. 510-519
  • DOI: 10.1063/1.1736034

Ultra-Low Thermal Conductivity in Organic–Inorganic Hybrid Perovskite CH 3 NH 3 PbI 3
journal, July 2014

  • Pisoni, Andrea; Jaćimović, Jaćim; Barišić, Osor S.
  • The Journal of Physical Chemistry Letters, Vol. 5, Issue 14
  • DOI: 10.1021/jz5012109

Recombination Kinetics in Organic-Inorganic Perovskites: Excitons, Free Charge, and Subgap States
journal, September 2014


Compositional engineering of perovskite materials for high-performance solar cells
journal, January 2015

  • Jeon, Nam Joong; Noh, Jun Hong; Yang, Woon Seok
  • Nature, Vol. 517, Issue 7535
  • DOI: 10.1038/nature14133

Works referencing / citing this record:

Evolution of Pb-Free and Partially Pb-Substituted Perovskite Absorbers for Efficient Perovskite Solar Cells
journal, May 2019

  • Wadi, Mohd Aizat A.; Chowdhury, Towhid H.; Bedja, Idriss M.
  • Electronic Materials Letters, Vol. 15, Issue 5
  • DOI: 10.1007/s13391-019-00149-4

Highly Efficient Perovskite-Perovskite Tandem Solar Cells Reaching 80% of the Theoretical Limit in Photovoltage
journal, July 2017

  • Rajagopal, Adharsh; Yang, Zhibin; Jo, Sae Byeok
  • Advanced Materials, Vol. 29, Issue 34
  • DOI: 10.1002/adma.201702140

The Role of Bulk and Interface Recombination in High‐Efficiency Low‐Dimensional Perovskite Solar Cells
journal, June 2019


A quantitative and spatially resolved analysis of the performance-bottleneck in high efficiency, planar hybrid perovskite solar cells
journal, January 2018

  • Draguta, Sergiu; Christians, Jeffrey A.; Morozov, Yurii V.
  • Energy & Environmental Science, Vol. 11, Issue 4
  • DOI: 10.1039/c7ee03654j

Toward Perovskite Solar Cell Commercialization: A Perspective and Research Roadmap Based on Interfacial Engineering
journal, June 2018

  • Rajagopal, Adharsh; Yao, Kai; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 30, Issue 32
  • DOI: 10.1002/adma.201800455

Ab initio study of the dynamics of electron trapping and detrapping processes in the CH 3 NH 3 PbI 3 perovskite
journal, January 2019

  • Zhang, Linghai; Sit, Patrick H. -L.
  • Journal of Materials Chemistry A, Vol. 7, Issue 5
  • DOI: 10.1039/c8ta09512d

Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces
journal, October 2019

  • Wolff, Christian M.; Caprioglio, Pietro; Stolterfoht, Martin
  • Advanced Materials, Vol. 31, Issue 52
  • DOI: 10.1002/adma.201902762

Light induced degradation in mixed-halide perovskites
journal, January 2019

  • Ruan, Shuai; Surmiak, Maciej-Adam; Ruan, Yinlan
  • Journal of Materials Chemistry C, Vol. 7, Issue 30
  • DOI: 10.1039/c9tc02635e

The Spacer Cations Interplay for Efficient and Stable Layered 2D Perovskite Solar Cells
journal, October 2019

  • Zhou, Ning; Huang, Bolong; Sun, Mingzi
  • Advanced Energy Materials, Vol. 10, Issue 1
  • DOI: 10.1002/aenm.201901566

On the Relation between the Open‐Circuit Voltage and Quasi‐Fermi Level Splitting in Efficient Perovskite Solar Cells
journal, July 2019

  • Caprioglio, Pietro; Stolterfoht, Martin; Wolff, Christian M.
  • Advanced Energy Materials, Vol. 9, Issue 33
  • DOI: 10.1002/aenm.201901631

Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells
journal, July 2018

  • Stolterfoht, Martin; Wolff, Christian M.; Márquez, José A.
  • Nature Energy, Vol. 3, Issue 10
  • DOI: 10.1038/s41560-018-0219-8

The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells
journal, January 2019

  • Stolterfoht, Martin; Caprioglio, Pietro; Wolff, Christian M.
  • Energy & Environmental Science, Vol. 12, Issue 9
  • DOI: 10.1039/c9ee02020a

The Relationship between Chemical Flexibility and Nanoscale Charge Collection in Hybrid Halide Perovskites
journal, March 2018

  • Luo, Yanqi; Aharon, Sigalit; Stuckelberger, Michael
  • Advanced Functional Materials, Vol. 28, Issue 18
  • DOI: 10.1002/adfm.201706995

On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells
journal, July 2019

  • Pisoni, Stefano; Stolterfoht, Martin; Löckinger, Johannes
  • Science and Technology of Advanced Materials, Vol. 20, Issue 1
  • DOI: 10.1080/14686996.2019.1633952

Ideal Bandgap Organic-Inorganic Hybrid Perovskite Solar Cells
journal, November 2017

  • Yang, Zhibin; Rajagopal, Adharsh; Jen, Alex K. -Y.
  • Advanced Materials, Vol. 29, Issue 47
  • DOI: 10.1002/adma.201704418

On the relation between the open‐circuit voltage and quasi‐Fermi level splitting in efficient perovskite solar cells
text, January 2019


On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells
text, January 2019


Nonradiative Recombination in Perovskite Solar Cells: The Role of Interfaces
text, January 2019


On the origin of open-circuit voltage losses in flexible n-i-p perovskite solar cells
text, January 2019


Solution-Processed BiI3 Films with 1.1 eV Quasi-Fermi Level Splitting: The Role of Water, Temperature, and Solvent during Processing
journal, October 2018

  • Williamson, B. Wesley; Eickemeyer, Felix T.; Hillhouse, Hugh W.
  • ACS Omega, Vol. 3, Issue 10
  • DOI: 10.1021/acsomega.8b00813