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Executive Summary:

Multijunction solar cells based on epitaxially grown IlI-V materials hold the record for solar
energy power conversion efficiency (PCE). However, due to the high cost of fabricating
these devices, they are typically only used for concentrator cells and space applications.
The overarching goal of this project was to develop low-cost printable hybrid perovskite
(HP) materials appropriate and optimized for tandem solar cells with high power
conversion efficiency under “1 Sun” illumination. Key results and findings over the course
of the project we:

e Developed higher-performance high-bandgap (1.75 eV) perovskite materials and
devices. In particular, we explored tens-of-thousands of compositions for high
bandgap perovskites, achieving quasi-Fermi level splitting of 1.35 eV fora 1.75 eV
bandgap material. We achieved World-record open circuit voltages from single
junction p-i-n devices, 1.24 V from 1.75 eV bandgap material, which is what is
preferable for tandems with a PCE of 14.3% using a guanidinium/formanadinium/
cesium alloyed lead iodobromide. We also developed a series of World-record
efficiency devices at higher band-gaps based on 2D/3D perovskites using PEA.

e Developed higher-performance low-bandgap (1.35 eV) perovskite materials and
devices. In particular, we developed a 1.35 eV bandgap perovskite of composition
MAPDbo.sSnos(lo.sBro.2)s and showed its superiority to MAPDbo.7sSno.2sls. High
efficiency solar cells were fabricated using PEDOT:PSS and doped-ICBA as HTL
and ETL, respectively. Short circuit currents of 25.7 mA/cm? and PCEs of 17.1%
were obtained.

e Developed mechanically stacked 4-terminal CIGS-Perovskite tandems with PCE
of 18.8% and monolithic 2-terminal CIGS-Perovskite tandems with PCE of 8.5%.
The low efficiency of the monolithic device is a result of the high surface roughness
of the solution processed CIGS bottom cells. This is not an intrinsic problem for
CIGS-perovskite tandems, but does mean that smooth evaporated or sputtered
CIGS films likely need to be used, unless a polishing step is employed.

e Developed monolithic 2-terminal Perovskite-Perovskite tandems with a stabilized
PCE of 18.5%. This was the World-record perovskite-perovskite monolithic
tandems for over a year in 2017-2018.

e Revealed that light is not an essential component of the so-called “light-induced”
phase segregation. By using charge injection in the dark and electroluminescence,
we showed that the presence of electrons in the conduction band and hole in the
valence band is sufficient to drive the nearly ubiquitously observed phase
segregation in high bandgap perovskites.

e Developed a new method to simultaneously measure absolute intensity
photoluminescence and photoconductivity and use them to obtain simultaneous
in-situ measurement of quasi-Fermi level splitting and diffusion length. This is
important since it provides a proxy for device Voc and device Jsc.

In addition, 67 papers were published with support from this award that detail many more
advances in the field, including numerous publications in high impact journals such as
Nature Photonics, Advanced Materials, ACS Energy Letters, and Energy and
Environmental Science.
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Background:

The hybrid perovskites (HPs) are a recently discovered material class with potential to
meet the global electricity demand at low cost. Power conversion efficiencies (PCESs) of
HP solar cells have increased faster than any other PV material in history, and HP devices
do not require use of any rare or expensive elements.'-® Cells can be fabricated from low
temperature (< 150 °C) solution processing, indicating that CAPEX up to an order of
magnitude lower than c-Si is possible*. Open-circuit voltages (Voc) from completed
devices of the 1.6 eV HPs have reached 92% of their detailed-balance maximum
(Voc,sq).2 The limited effect of non-radiative recombination in HPs despite fabrication via
solution processing have shown that energetically favored intrinsic defects do not create
effective Shockley-Read-Hall recombination centers®’. Either their populations are low,
they have small capture cross-sections due to the large dielectric constant of HPs, or their
energy levels lie close to the band edges or within the bands themselves. This “defect
tolerance” in HPs has been attributed to the orbital character of the band extrema (CB
minimum consisting of bonding orbitals with the VB maximum consisting of antibonding
orbitals — opposite of typical semiconductors), the low charge carrier effective masses,
and the high static dielectric constant®1!

An intriguing and exceptionally useful quality the HP material class is its compositional
variation leading to tunability of material properties. HPs have stoichiometry ABXs, where
A may be an organic or inorganic monovalent cation such as methylammonium (MA™),
formamidinium (FA*), or cesium (Cs*), the B site is a divalent metal cation (usually Pb*?
or Sn*?), and X is a monovalent anion, typically | or Br. Since each lattice site can be
continuously alloyed between different ions, the HP material class has an endless
composition space contributing to the material versatility. For example, as the X site is
alloyed from pure I" to pure Br in MAPbXs, the material bandgap (Eg) changes
continuously from 1.6eV to 2.3eV*2. Further, for (FA,Cs)BIs, as B is changed from pure
Pb*2 the pure Sn*?, the bandgap goes through a minimum at about B = Sno.7sPbo.2s with
Egq = ~1.2 eV1318, This bandgap tunability enables the realization of two-terminal tandem
solar cells which have potential to better utilize the solar spectrum without adding
significant additional module costs. HPs can be implemented into a tandem with a mature
PV technology with ~1.1eV bandgap (such as c-Si'’ or CIGS?!®) as a runway to
commercialization, or HPs with different bandgaps can be utilized together in tandem
configuration for a completely solution-processed technology with practically attainable
PCE of 32%%°,

Although two-terminal tandem configurations have the greatest possible economic
benefit??, the current matching constraint requires precise bandgap pairings to optimally
utilize the solar spectrum, with 1.75eV and 1.82eV having ideal top-cell bandgaps for
1.10eV (c-Si) and 1.22eV (Pb-Sn HP) bottom cells respectively*4. However, the highest
Voc/Voc,sq reported for a HP in the 1.70-1.85eV bandgap range is ~85%" 2%, compared
to 92% for the lower bandgap HPs3. In other words, as the HP bandgap increases from
1.6 to 1.8 eV, the maximum reported Voc remains constant at ~1.24V, suggesting there
is no benefit in using a 1.75eV top cell over a thinner 1.6eV top cell. High-bandgap
perovskites also suffer from shorter carrier diffusion lengths than the lower Eg alternatives,
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which is due to shorter carrier lifetimes (faster non-radiative recombination) as well as
lower carrier mobilities?? 23,

Another concern with the high bandgap HPs is their phase instabilities upon illumination
or current injection?#28, Hoke et al. demonstrated that the | and Br ions redistribute under
illumination and form a secondary phase. The photo-excited carriers transfer into the
lower bandgap I-rich phase before recombining radiatively as shown by a
photoluminescence (PL) peak red-shift upon continuous illumination. This phase
segregation is reversible as evidenced by the PL peak position reverting to its original
position after the perovskite is left in the dark. Phase segregation has been shown to have
adverse effects on device performance,?® which has been associated with carrier
confinement in the low bandgap phase, reducing current collection and attainable AEF?®
29 Several groups have reported that high bandgap (FA,Cs)Pb(l,Br)s HPs are phase
stable and have shown stable PL emission and device power output under 1 Sun
illumination for modest time periods!? 22 23.30 yet the phase stability of this composition
is debated and seems to depend on fabrication route3 32, In addition to phase
segregation exhibited by the mixed-halides, HPs have exhibited other forms of instability
issues. HPs degrade upon exposure to water or in the simultaneous presence of oxygen
and photoexcited or current injected carriers®-37. HP devices have further instabilities due
to reactions with metal electrodes and some carrier transport layers'’. 3840 To achieve
the DOE SunShot goal of $0.03 $/kWh levelized cost of electricity by 2030, year-over-
year degradation rates must be reduced to less than 1%*4..

The perovskite research field has evolved rapidly in the four years of this project. Below
we summarize some of the most recent and relevant background from other work.

By the end of 2017, notable advances in high bandgap HP devices and HP stability
had been demonstrated:

Large bandgap hybrid perovskites: High bandgap, mixed halide perovskites have been
successfully paired with c-Si,*>%°> Cu2ZnSn(S,Se)s (CZTS),*® CIGS,'® 47 and lead-tin
iodide perovskites*® 4% into monolithic 2-terminal tandems; however, significant voltage
losses in mixed halide top cells have prevented such devices from exceeding 80% of their
respective detailed-balance limit open circuit voltage*® (for comparison, the record IlI-V
tandem has a Voc of 2.248 V°0 which is 94.5% of its respective detailed-balance limit).
Indeed, the open circuit voltage of single junction mixed halide hybrid perovskites devices
with bandgaps between 1.7 and 1.8 eV has not surpassed 1.24 V5154 (the detailed
balance limit Voc for a 1.75 eV bandgap absorber is 1.463 V).

Observations that Voc does not increase proportionally with increasing bandgap?®: 5557
and that current decreases with time under constant operation in many mixed halide
perovskite devices,*8-€° have driven significant research efforts to discover high bandgap
compositions that do not exhibit phase segregation under illumination. Several
approaches have been used to suppress the phase segregation that occurs under
illumination in high bromide hybrid perovskites including increasing domain size®°,
increasing lattice strain,® and mixing the A-cation site.53 61-64 One effective approach has
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been to replace MA with the “double-cation” FA and cesium (FACs), which exhibits a
stable PL peak position with time under constant illumination.?2 53

A recent review summarizes the current understanding of the light induced phase
segregation.>® Molecular dynamic simulations have predicted phase segregation to be
caused by excess charge carriers distorting the lead halide lattice via electron-phonon
coupling, while cathodoluminescence experiments studying MAPDb(I,Br)s films before and
after light soaking provided evidence that the iodide-rich phase forms mostly between
morphological domains during phase segregation.5®

Perovskite Stability: In order to avoid the degradation pathway induced by light and dry
air, the formation of superoxide anion, which is believed to be the main species
deprotonating the ammonium groups of organic cations in perovskite®® 67 was studied.
Hague's group®® discover the generation of superoxide anion is inevitable when
perovskite is exposed to light and oxygen. The ab initio simulations based on DFT reveal
the transfer of photo-generated electrons to oxygen in defect-free MAPDbIs is energetically
favorable (the formation energy is -1.19 eV) since the unoccupied oxygen r* anti-bonding
orbital is located in the middle of the MAPDbIs band gap where it can readily act as an
acceptor state for photo-generated electrons. (See figure 25a) The formation energy of
superoxide anion is even more favorable (the formation energy is -1.94 eV) when oxygen
is located at iodine vacancies in perovskite because the unoccupied oxygen =n* anti-
bonding orbital is then shifted down to the position slightly below the conduction band.
(See figure 25b) Therefore, reducing iodine vacancies in perovskite can mitigate this
degradation pathway.

Since the formation of superoxide anion is inevitable, a different strategy is necessary to
stop the degradation pathway triggered by light and dry air: have the deprotonation
reaction to reach an equilibrium. A recent publicaiton® reports use of sputtering an ITO
layer on perovskite PV devices as an electrode and an encapsulant. This sputtered ITO
layer served well to prevent the egress of methylamine and other products during the
degradation. As a result, the device could maintain its maximum efficiency under the
exposure to light and ambient air at room temperature for long periods.

By the end of the project (October 2018), further advances had been demonstrated
related to high bandgap perovskite and tandem devices:

Tan et al. claim MAI (or other dipolar cations) are important for healing deep trap defects
in high bandgap perovskites®®. Leijtens et al. demonstrate a new HP-HP tandem record
PCE of 19.1% by fabricating thicker Pb-Sn bottom cell absorber layers and decreasing
absorption losses®. Zhou et al. combine SCN- exposure with FAI excess to attain Vocs
of 1.31V (for 1.93eV bandgap) for n-i-p architecture cells’®. To improve the p-i-n
Voc/Voc.sq state-of-the-art, Luo et al. used GAIl regrowth the attain 1.21V for 1.62eV
bandgap, improving interface quality’t. Finally, Stolterfoht et al. find that adding
interlayers of PEN and LiF in PTAA/HP/Cseo architecture improve AEF and device Voc and
FF2. In summary, we are starting to see other groups utilize similar techniques to
understand when absorbers or interfaces are limiting device performance, and we see
many groups using similar approaches to improve either HP or interface quality.
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Introduction:

In order to achieve the project objective of developing high efficiency tandems that utilize
hybrid perovskites, the work plan was broken down into 6 focused tasks over the 4-year
planned project duration.

Task 1: Developing Combinatorial Spray Coating Method for Perovskites. This task
was focused on developing methods for depositing a large number of compositions
to screen for high optoelectronic quality using our advanced photoluminescence
tools.

Task 2: Developing High-Bandgap Perovskites with High QFLS & Stability. This
task focused on using the methods developed in Task 1 to discover high bandgap
perovskites with improved optoelectronic quality.

Task 3: Improving Perovskite Film Morphology. This task focused on improving the
film morphology and controlling the phase of promising compositions, including
light induced phase segregation in high-bandgap perovskites.

Task 4: Developing High Bandgap Single Junction Perovskite Solar Cells. This
task focused on utilizing the advances of Tasks 1-3 along with interface passivation
strategies to vyield improved single junction devices with bandgaps and
archiectures chosen to utilize for tandems in Task 6.

Task 5: Developing Interconnect Layers. This task focused on developing high
transmissivity low series resistance layers that accept holes from the top cell and
electrons from the bottom cell.

Task 6: Tandem Solar Cells. This task focused on pulling together the advances
of tasks 1-5 to yield completed tandem solar cells.
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Project Results and Discussion:

Task 1: Develop Combinatorial Spray Coating Method for Hybrid Perovskites

We successfully developed spray coating methods amendable for high-throughput
assessment of HP material quality, as shown in Figure 1 and applied is several
publications?®: 3
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Figure 1. Composition gradient preparation and characterization. (a) lllustration of spray coating setup used
to achieve spray gradients. Pumps feed the ultrasonic spray nozzle while it translates across the sample.
Inset: pump gantry used, including an initial delay time, pump ramp time and final hold time. (b) EDS results.
Relative bromide content (open blue circles) and halide to lead ratio (filled red circles) as a function of
distance along the gradient profile as determined by EDS. The black line is to guide the reader’s eye. (c)
UV-vis—NIR results. Absorbance squared spectra measured at several positions along the gradient with
the relative bromide composition of each given in the legend. (d) Extracted bandgap data from linear
extrapolation shown as a function of relative bromide content from this work and from Noh et al. using red
circles and black squares, respectively.

Task 2: Develop High-Bandgap Hybrid Perovskites with High QFLS & Stability
Subtask 2.1. Mapping the Ternary Halide Composition Space

Here we report optoelectronic quality and stability under illumination of thousands of
compositions ranging from the pure iodide (CH3NH3PbI3) to the diiodomonobromide
(CH3NH3PDbI2Br). Hyperspectral maps of steady-state absolute intensity
photoluminescence (AIPL) are used to determine the quasi-Fermi level splitting (QFLS)
at each point after synthesis. The QFLS upon first illumination increases with bandgap
and reaches a maximum of 1.27 eV under 1 sun illumination intensity for a bandgap of
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1.75 eV. However, the
optoelectronic  quality  (x),
defined as the ratio of the
QFLS to the maximum
theoretical QFLS for
bandgap, decreases with
bandgap from around 88% for
1.60 eV bandgap down to
82% for 1.84 eV bandgap.
Further, we show that a
reversible light induced defect
forms that reduces the
optoelectronic quality,
particularly for high-bandgap
materials. Even with the light-
induced defect, a stable
QFLS of about 1.17 eV is

possible. Comparing our
QFLS to Voc values from HP
devices reported in the

literature indicates that higher
open circuit voltages are
possible but may require
optimization of band
alignment. Further, the
spectral shape of the PL
emission is found to be more
commensurate with Franz—
Keldysh broadening from

Recipient Name: University of Washington
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Figure 2. AIPL collected at 1 sun of composition spread library. (a)
Spatial map of local peak position with color scale given above. Y-
position averaged peak position as a function of Br content, with the
black line representing the UV-vis determined bandgap trend. (b)
Spatial map of local external photoluminescence quantum vyield
(PLQYEex) with log-scale color bar given above. Y-position averaged
PLQVYext given as a function of bandgap. (c) Quasi-Fermi-level
splitting determined from PLQY, Apgqv, given as a function of
bandgap with black lines representing lines of constant PLQY
assuming a lattice temperature of 350 K. (d) Optoelectronic quality
parameter, x calculated as a percent from Apgv/Aumax given as a
function of bandgap.

local electric fields or from a screened Thomas—Fermi density of states (as opposed to a

joint density of states

Figure 2 shows milestone M2.1.4 is achieved with this composition range — we measure
guasi Fermi-level splitting values between 1.15 and 1.27 eV in the tandem-relevant
bandgap regime, which spans 82-88% of the detailed balance limit quasi Fermi-level

splitting”3.

Subtask 2.2 Revealing the Role of Hydrogen Bonding

(a) Strain Management in High Bandgap Perovskites through Combinatorial Spray Coating
We study the impact of A* size mismatch induced lattice distortions (in ABXs structure)
on the optoelectronic quality of high-bandgap HPs and find that the highest quality films
have high A-site size-mismatch, where large guanidinium (GA) compensates for small Cs
to keep the tolerance factor in the range for the perovskite structure (see Figure 3).
Specifically, we find that 1.84eV bandgap (FA0.33GA0.19CS0.47)Pb(lo.66Bro.3a)s and 1.75eV
bandgap (FAo0.58GA0.10Cs0.32)Pb(lo.73Bro.27)s attain quasi-Fermi level splitting of 1.43eV
and 1.35eV, respectively, which is >91% of the Shockley-Queisser limit for both cases.
Films of 1.75eV bandgap (FA,GA,Cs)Pb(l,Br)sare then used to fabricate p-i-n
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photovoltaic devices that have aVocof 1.24 V. ThisVocis among the
highest Voc reported for any HPs with similar bandgap (1.7 to 1.8 eV) and a substantial
improvement for the p-i-n architecture, which is desirable for tandems with Si, CIGS, or a
low-bandgap HP. Collectively, our results show that non-radiative recombination rates
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Figure 3. Spray coated A-site composition gradients of HPs and their optoelectronic quality for a fixed
iodide to bromide ratio, or APb(lo.66Br.34)3, where A can be an alloy containing FA, MA, GA, or Cs. (a)
Photo of four example gradients; composition along the 80 mm substrate is a linear combination of the
compositions listed on the ends. Samples are enclosed behind two glass sheets with a quartz top window
using an O-ring, vacuum grease, and clamps screwed into an optical stage to ensure AIPL measurements
are collected with the samples in a N2 environment. (b) Compiled AIPL results for eight gradients, showing
optoelectronic quality fraction y vs. mean PL emission energy, with several compositions of interest
highlighted. Note that AEF sq is identical to gVoc,sq. (c-d) example results showing (c) mean PL emission
energy and (d) optoelectronic quality as the composition changes along the length of the gradient for two
example gradients. Note that the absolute intensity PL measurements were collected at 1 Sun photon
flux (541 W/m? with a 532nm cw laser)

are reduced in (FA,GA,Cs)Pb(I,Br)s films and prove that FA-GA-Cs alloying is a viable
route to attain high Voc in high-bandgap HP solar cells”.

(b) Correlation between Photoluminescence and Carrier Transport and a Simple In
Situ Passivation Method for High-Bandgap Hybrid Perovskites

Several recent developments have confirmed that enhancing crystallinity and increasing
lattice strain are both successful in reducing phase segregation in mixed-halide
perovskites, creating films that show phase stability under 1 Sun illumination?? 53. 54,
However, in the few cases demonstrating phase stable materials, the voltage deficit is
still much greater in the high bandgap perovskites than their low bandgap (~1.6eV)
predecessors, and diffusion lengths are too low for optically thick current matched
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devices. Photoluminescence can be used to rapidly screen material optoelectronic quality
to explore methods to reduce the voltage deficit in high bandgap perovskites. However,
studying photoluminescence alone to characterize overall optoelectronic quality has
some potential pitfalls as alone it does not provide information on carrier transport, which
may affect the recombination process by localizing carriers. While photobrightening has
been observed in perovskites under several situations including low-light exposure (trap
filling)"® treatment with Lewis bases (defect passivation)’® 77 or during aging in air’® 79, it
is unclear if the PL enhancement is due to a reduction or passivation of non-radiative
recombination centers in the bulk or due to spatial confinement of carriers. Quantifying
carrier transport by measuring the effective diffusion length simultaneously with
photoluminescence would reveal the coupling (or lack thereof) between transport and
recombination and provide a clearer understanding of the optoelectronic properties of
HPs along with a means to assess material stability and defect passivation efforts. Here,
we use a photoconductivity-based method to estimate the average carrier diffusion length
coupled simultaneously with absolute intensity PL measurements. We show for the first
time that there is an intimate (and sometimes dramatic) correlation between carrier
transport and photoluminescence (see Figure 4). We also show a new a and simple
in-situ method to increasing passivation in HP films. In this work, we also assess the role
of A* cation and surface passivation on PL-Lp behavior.

Figure 4. Correlation between
photoluminescence quantum yield and
mean carrier diffusion length as a function
of time for MAPbI3 degradation in air (35%
RH) under steady 1 Sun illumination. (a)
The PLQY and Lo plotted each with time
for 1.61 eV bandgap MAPbIz at effective 1
Sun illumination with a calibrated blue
LED. Ideal stable behavior would appear
as straight horizontal lines. However,
several distinct regimes of change and
correlation are observed (I, Il, lll, and V).
Note region Il where significant
photobrightening is observed
simultaneously with loss of diffusion
length. (b) Same data as in part (a) but
plotted together (PLQY vs. Lb)
5 s o R Y parametrically with time. Ideal stable
il behavior would be a stationary point. (c)
Wide-field PL images at 120 min and 163
min during the MAPbIs degradation. Au
contacts are labeled in the “120 min” PL image. (c, inset) Photo of MAPbIs film after exposure to air and 1
Sun excitation for three hours.
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Subtask 2.3 Development of Lead-free Hybrid Perovskites

In Year 1, we explored divalent cations such as tin (Il), germanium (1), and copper (I1).
Both partial lead replacement and total substitution were characterized with a variety of
halide compositions. The methylammonium organic cation was used in all cases to
simplify the combinatorial studies determining the compositional space in which the hybrid
perovskite lattice can be maintained. Our initial work shows that the only serious
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elemental candidate for Pb substitution is Sn. Thus, in our continuing effort to replace Pb,
Pb-Sn alloys will be the primary system of study.

(a) Lead-Tin Hybrid Perovskites

We employed a combined compositional, process, and interfacial engineering to develop
highly efficient and stable Pb-Sn binary perovskite solar cells with successful Pb
replacement up to 25%. By adopting solvent-washing methodology, homogeneous and
densely crystalline MA1-yFAyPb1-xSnxlz films could be attained. The energy levels of these
resultant binary perovskites were carefully investigated to facilitate the selection of
appropriate CTLs for minimizing recombination losses and maximizing charge transfer
efficiency of the derived devices. Due to the improved morphology of low Eg
MAPbo.75Sno.2sl3 and carefully chosen CTLs, the derived PVSC showed an impressive
PCE of 14.35%. More importantly, the tendency of easy Sn?* oxidation could be alleviated
by incorporating FA cations to form a low Eq (1.33 eV) mixed-cation Sn-based perovskite,
MAo.5FA0.5Pbo.75Sno.25l3. As a result, a PVSC with a stabilized PCE of 14.19% can be
achieved. MAo.sFA0.5Pbo.7sSno.2sls PVSC exhibited an improved Jsc (23.03 mA cm)
compared to that of MAPbo.7sSno.2sl3 device due to a slightly smaller Eq. Moreover, 80%
and 94% of initial PCE can be retained after 12- and 30-day storage in ambient (30-40%
RH) and inert atmospheres, respectively. The implications of this work coupled with
further compositional engineering would be vital to fuel the development of Pb-free large
Eg PVSCs.

We found that the introduction of Cs effectively modulates the film formation of Pb—Sn
perovskites and thus results in improved film quality for high Sn-containing compositions.
This is attributed to the reduced crystallization rate in the presence of Cs cations. As a
result, both MAPb1xSnxls and FAPb1xSnxls PVSCs with high Sn substitution ratios can
deliver enhanced PCE and stability with an appropriate amount of Cs incorporation
(Figure 5a-b). For instance, with 50% Sn, MAo.9Cso.1Pbo.sSno.sls and FAo0.8Cso.2PbosSnosls
perovskites possess a low Eg of 1.26-1.28 eV and afford high PCEs of 10.07% and
11.63%, respectively, outperforming the performance of the PVSCs without Cs. More
importantly, the MAo.9Cso.1Pbo.sSno.sls based device can maintain ~75% of its initial PCE
after being annealed at 85 °C under inert conditions for 12 days and ~76% of its initial
PCE after being stored in an ambient environment with a relative humidity of 35% for 20
days (Figure 14c-d).
a b c d
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Figure 5. (a) Performance comparison of MAPDb1xSnxlz and MAo.eCso.1Pb1-xSnxls PVSCs. (b) Performance
comparison of FAPb1-xSnxls and FAo0sCso.2Pb1xSnhxls PVSCs. (c) Thermal stability and (d) ambient stability
test of MAPb1xSnxls and MAo.9CsSo.1Pb1-xShxlzs PVSCs.

With optimized processing conditions and additive formulation, a phase pure
MAPbo.sSnosls film was obtained with homogenous coverage and excellent crystallinity
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with an Eg of 1.22 eV. There is a significant mismatch between conduction band minimum
of MAPbo.sSnoslz and the lowest unoccupied molecular orbital of Ceo. The difference in
energy levels can be reduced by using an alternate fullerene variant, Indene-C60 bis-
adduct (ICe0BA) as ETL (Figure 6a). Relatively small PLQY and faster PL decay illustrate
dominance of nonradiative losses on charge transfer at the MAPbo.5sSno.sl3/Ceo interface,
which ultimately constrained device performance. With 1CsoBA we not only mitigate
hysteresis related instability but also realize a remarkably high Voc (0.84 V), which is =88%
of the SQ limit (Figure 6b-f). Stable devices with small Voc,i0ss (=0.38 V) realized here is
the lowest among reported Pb-Sn binary PVSCs. This provides a platform to realize high
Voc in 2-T tandems. These results have been published as a part of an article in Advanced
Materials4.
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Figure 6. Photovoltaic and optoelectronic characteristics of Pb-Sn binary alloys. (a) Energy level diagram.
(b) Typical J-V characteristics. (c) steady-state current under AM1.5 illumination at an applied voltage
corresponding to MPP. (d) Quasi-Fermi level splitting values. (e) Transient photoluminescence. (f)
photoluminescence spectra.

Our previous work has demonstrated a greatly improved PCE and stability of Pb-Sn
PVSCs using a combined process, interfacial, and compositional engineering!4. Such
binary alloy compositions provide a platform for development of ideal bandgap (1.3-1.4
eV) absorbers, pivotal to further improve PCE of single junction PVSCs because of better
balance between absorption loss and thermalization loss as demonstrated by Shockley-
Queisser detailed balanced calculation. However, ideal bandgap PVSCs are currently
hindered by poor optoelectronic quality of perovskite absorbers and their PCEs have
stagnated at <15%%. We systematically investigated the optoelectronic properties of
MAPb1-xShxl3 alloys to find the origin of stagnation in developing ideal bandgap Pb-Sn
alloys and identify that currently used 75%Pb-25%Sn alloy is intrinsically defective.
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Subsequently, we have rationally developed an ideal bandgap perovskite composition
(MAPbo.5Sno.s(lo.sBro.2)3) and show its superiority to MAPbo.75sSno.2sl3. To fabricate efficient
solar cells using the developed ideal bandgap perovskite absorber, we chose
PEDOT:PSS and doped-ICBA as HTL and ETL respectively (Figure 7a). The comparison
of two different ideal bandgap compositions clearly portrays the merits of improved
optoelectronic properties (lower non-radiative recombination losses and higher
absorption coefficient) of MAPbosSno.s(lo.sBro.2)s in realizing high performance (Figure
7b-c). As the thickness of perovskite increased, the Voc and FF were maintained and the
Jsc increased from 21.51 to 25.67 mA cm?, resulting in a PCE increase from 14.71 to
17.13%; the relatively unchanged Voc and FF demonstrates excellent optoelectronic
guality of the newly developed composition, which is not limited by charge transport within
the perovskite layer (Figure 7d-f). PCE > 15% achieved here surpasses requirements of
Milestone 2.3.5. These results were published in Advanced Materials®.
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Figure 7. Photovoltaic and optoelectronic characteristics of ideal bandgap PVSCs. (a) Energy level
diagram. (b) Typical J-V characteristics under AM 1.5 illumination and (c) PL spectra of MAPbo.75Sno.2sl3
and MAPbo.sSnos(lo.sBro.2)s perovskite with same film thickness of 240 nm. (d) Typical J-V characteristics
and (e) EQE spectra of MAPbosSnos(losBroz2)s PVSCs with different perovskite thicknesses of 240, 350,
and 560 nm. (f) Efficiency distribution of the optimized MAPbo.sSno.s(lo.sBro.2)s PVSCs.

(c) Pure Tin Perovskites

Besides the regular 1-step deposition, sequential deposition route (generally denoted as
2-step deposition) has also been widely used for preparing the Pb-based perovskites and
been shown to afford good quality control of the deposited film. Recently, 2-step method
has been reported via thermal evaporating Sni2 with FAI film, and this perovskite layer
based device showed 3.98% PCE on indium tin oxide (ITO) substrate and 3.12% PCE on
flexible substrate®. However, the 2-step deposition has not been fully explored so far for
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depositing the Sn-based perovskites due to fast reaction of precursors as discussed
earlier. Different from the 1-step deposition, where the evolution of perovskite
crystallization mainly encompasses film shrinkage, the 2-step deposition involves
additional volume expansion

(a) Inhomogeneous film coverage Homogeneous film coverage Of precursory Pblz/SnIz f||m
before the intercalations with
MAI/FAI precursors.
Recently, the evolved
intermediate phase based on
lodoplumbate anions that
mediates the  perovskite
crystallization has  been
embodied as the Lewis acid—
base adduct formed by metal
halides (serve as Lewis acid)
T and polar aprotic solvents
=##  (serve as Lewis base®3).
lidsntss  Based on this principle, we
propose to constitute efficient

(b)

~.{‘:

W Il N m l E— i“\ | Lewis acid—base adduct in
i ’llll g.\\ the Snlz deposition step to

rrent Density (mA/em’)

T . & SRS e modulate its volume

Voltage (¥

Figure 8. (a) SEM images of: A1,A2) Snl. and FASnls, B1,82) ©€XPansion and fast reaction
Snl+SnF2 and FASNIs+SnF2, and C1,C2) Snlo+SnF+TMA and With MAI/FAL (FAL is studied
FASNIs+SnF2+TMA perovskite films fabricated by the two-step hereafter). Herein,
method. Cross-sectional SEM image, energy level diagram and J-V trimethylamine (TMA) is
curves of the fabricated PVSCs based on (b) conventional and (c) employed as the additional

inverted device architectures. . . . .

Lewis base in the tin halide
solution to form SnY2—TMA complexes (Y = |-, F-) in the first-step deposition, followed
by intercalating with FAI to convert into FASnIzs. We showed that TMA can facilitate the
homogeneous film formation of Snl2 (+SnF2) layer by effectively forming the intermediate
SnY>—TMA complexes (Figure 8a). Meanwhile, its relatively larger size and weaker
affinity with Snlz2 than FA* ions will facilitate the intramolecular exchange with FA* ions,
thereby enabling the formation of dense and compact FASnI3 film with large crystalline
domain (>1 pum). As a result, high PCEs of 4.34% and 7.09% with decent stability were
successfully accomplished in both conventional and inverted PVSCs (Figure 8b, c),
respectively, comparable to the state-of-the-art values reported in the literature. This work
has been published in Advanced Materials84.

Task 3: Hybrid Perovskite Film Morphology

Here, we have developed three facile methods to modulate the crystallinity and surface
morphology of solution-processed polycrystalline perovskite thin films to effectively
enhance the resulting photovoltaic performance of the derived solar cells. Milestone 3.2
related to improved morphology by additive is met in this section.
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(a) Roles of Alkyl Halide Additives in Enhancing Perovskite Solar Cell Performance

Alkyl halides with different alkyl

chain lengths and end-groups (f):/;\j ﬁ%ﬁ :%\:
...(‘uo ‘o - O -

(d)

have been systematically
investigated to elucidate their
influence on the performance
of perovskite solar cells, as
shown in Figure 9a. All the
studied additives have resulted
in clearly enhanced
crystallization _and SUbStrate alkyl halide additives. (b) Comparison of XRD and UV-vis of the
coverage In solution- | perovskite thin films processed from 3MAI+PbCl> (mole ratio:
processed perovskite thin 3:1, 40 wt%) and MACI+PbCl2+1,4-DIB (mole ratio: 1:1:4, 11.4

wt%). The insert are the real pictures of the perovskite thin films,

films. As a result, PCE of | processed from different precursor solutions, after thermal
devices made from these | annealing at 90 °C. (c) lllustration of the roles of alkyl-halide

i AL ; additives during perovskite crystallization. (d) J-V curves and
gddltlve enhance% perovskites EQE spectra of the best studied PHJ solar cells under 100 mwW
increase from 9.8% (based on | cm-=2 AM1.5 illumination.

pristine perovskite) to as high
as 13.1%. More interestingly, we found out that the characteristic peaks in XRD pattern,
the absorption band-edge in UV spectra, and the resultant color (Figure 9b) of the thin
film processed from MACI + PbCl2 + 1,4-diiodobutane (1,4-DIB) formula are almost
identical to that of conventional CHsNHsPbls-xClx (processed from 3MAI + PbClz). All
these results indicate that the thin-film processed form the new formula can result in the
formation of CH3NH3PblsxClx. Since 1,4-DIB is the only source for iodide, this result
obviously demonstrates that the C-I bond in 1,4-DIB was cleaved and the resulting iodide
participated in the crystallization process of perovskite. All these discoveries enables us
to conclude that the observed change of crystallization dynamics induced by alkyl halides
should be the cooperative results of modulated solvent-solute interactions between alkyl
halides and Pb?* as well as the cleaved C-I bond during thermal annealing, as is illustrated
in Figure 9c. These combined findings prove that alkyl halide additives can play multiple
roles in modulating the dynamics of perovskite crystal growth. As a result, all the studied
additives enhance crystallization and surface coverage of solution-processed perovskite
thin films and enable significantly enhanced PCE (from 9.8% in device made from a
pristine perovskite to as high as 13.1% in additive-processed perovskites) (Figure 9d).
Our study opens up new perspective on perovskite preparation to for optimizing
perovskite active layer properties to expand device performance ceilings.

(b) Fast MA Vapor Treatment

Here, we describe a fast (less than 1s) and simple post deposition chemical treatment in
which crystal reconstruction induced by a methylamine (MA°) vapor greatly improves
perovskite film coverage, crystallinity, and device performance (Figure 10). We not only
demonstrate the efficacy of this chemical treatment in improving the photovoltaic
performance of a PHJ device, we also mechanistically study the process to reveal the
role of hydrogen bonding between methylamine vapor and the perovskite’s organic
sublattice in mediating the material’s reactivity toward the vapor through the exploration
of a variety of hybrid perovskite systems. Furthermore, through detailed microscopy, we
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also demonstrate that the nature of MA%-perovskite coordination and its microstructural
consequences are a function of MA° vapor pressure, interaction time, and composition of
the organic sublattice. Ultimately, we offer design rules for amine vapor based hybrid
perovskite post chemical treatments vaparewﬂsufe 0 Vapomlease

(Figure 11).
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Figure 10. Comparison of a MAPbIs film before
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XRD of a sample before vapor exposure (control) | nost deposition treatments for organo-metal
and immediately after vapor exposure at room | halide perovskites in general.

temperature (treated). SEM images before vapor
exposure (c) and immediately after vapor exposure
at room temperature (d).

(c) Fluoroalkyl-substituted fullerene/perovskite heterojunction (FPHJ) for efficient
and ambient stable perovskite solar cells

To mitigate the adverse effects caused by defects and improve stability in parallel, we
developed a fluoroalkyl-substituted fullerene, DF-Ceo to form a f-FPHJ and demonstrated
its potential to realize efficient and ambient stable PVSC. The DF-Ceso was directly added
into perovskite solution with appropriate weight ratio (0.01-0.1 wt%) to formulate f-FPHJ.
The surface morphology of the prepared f-FPHJ films with different blending
concentrations of DF-Ceo showed that the grain size increased from 100-200nm to 300-
400 nm for f-FPHJ films. Such increase in grain size might be because the DF-C60 can
move around to reduce compressive stress induced by the volume expansion during film
evolution while it can also fill the spaces left in the entire film. However, as at 0.1 wt%
pinholes start to appear in film which can be attributed to phase separation between
MAPDbI3 and DF-C60. As the loading of DF-C60 increased, more white spots are observed
at the GBs indicating aggregation of DF-C60 given that no clear secondary phase is
observed in XRD. This supports that the blended fullerene tends to distribute at the GBs
of the perovskite films as reported in literature.® Like the previously reported FPHJs,85 87
the DF-C60 is proven to effectively passivate the defects in the perovskite film to facilitate
the charge transport/collection in the derived PVSC (Figure 12a-f). Consequently, the f-
FPHJ device can yield an enhanced PCE of 18.11%, outperforming that of the
pristine CHsNHsPbls device (15.67%) (Figure 12g-f). Finally, benefitting from the
hydrophobicity of DF-C60, the un-encapsulated f-FPHJ device shows better stability
against moisture than that of the pristine device. More than 83% of the initial PCE can be
retained after being stored in ambient with a relative humidity of 60 +5% for 1 month while
the PCE of the pristine device degraded to lower than 22% of its initial value after stored
under the same environment for 22 days. The realization of 18.11 % PCE in this work
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directly fulfills the Go/No-Go 6 (option 1), which requires demonstration of an 18%
PCE single junction HP solar cell without constraints.
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Figure 12. (a, d) height and work function channel's pictures, (b, €) value of work function obtained using
scanning kelvin probe microscopy, and (c, f) scheme of energy bending and alignment at GBs for the
pristine MAPDbI3 (top) and 0.025 wt% DF-C60-MAPbI3 (bottom) films, respectively. (g) J-V curves, (h) the
stabilized Jsc and PCE of 0.025 wt% DF-C60-MAPbI3 devices.

(d) Role of Grain Size in Current-Induced Phase Segregation in Mixed Halide Hybrid
Perovskites and its Impact on Two-Terminal Tandem Solar Cell Design
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MACSs devices sustain near constant power output at 1 sun and do not affect the current
output of a CIGS bottom cell when used as an incident light filters8,

Task 4: Develop High Bandgap Single Junction Hybrid Perovskite Solar Cells

Subtask 4.1. Interface Engineering of the ETM, HTM and Passivation Layer

(@) CuSCN as an HTM
Herein, we are
particularly interested in | (@) _ °
demonstrating a high
performance PHJ HPSC
using solution-processed
CuSCN HTL. By utilizing
diethylsulfide (DES),
which has higher =
So|ub|||ty (>4O mg/mL) 02 o0 02 04 08 08 10 12 ° s 0 0 20 20 300
and low boiling point (ca. Sles V] et

90 °C) than | Figure 14. (a) J-V curves with different thickness of CuSCN as
dipropylsulfide (~20 compared to the PEDOT:PSS under AM1.5G illumination, and (b) the

R ambient device stability of the optimized HPSCs with CuSCN or
mg/mL and ca. 140 °C), | PEDOT:PSS, measured periodically but not kept under constant

as the processing illumination.

solvent for CUSCN,?° a very thin and compact film can be easily obtained by simple spin-
coating technique. Its good resistance to polar solvents (such as DMSO) can serve as a
robust underlying layer to allow the subsequent solution processing of PHJ HPSCs.
Moreover, CuSCN shows much higher transmittance than PEDOT:PSS in the entire UV-
Vis-NIR range, and especially in the NIR, which is crucial for the development of
monolithic tandems where the perovskite is the top cell. The CuSCN films show superior
transmittance in the Vis-NIR as their thicknesses were increased from 25 to 150 nm.
Figure 14a presents the J-V curves of fabricated HPSCs based on CuSCN with different
thickness and the reference device based on PEDOT:PSS. Encouragingly, the optimized
CuSCN-derived HPSC (CuSCN thickness: 40 nm) exhibited an impressive PCEwmax of
16% while the control PEDOT:PSS-based device only yielded a 12.1% PCEwmax. The
major improvement lies on the increased Voc (from 0.91 V to 1.07 V). It is noteworthy that
the morphology and crystallinity of MAPDIs layers on both CUSCN and PEDOT:PSS HTLs
were quite similar, indicating the improved Voc of the CuSCN-based device relative to
PEDOT:PSS-based device is mainly attributed to the better energy level matching at the
CuSCN/perovskite interface than the PEDOT:PSS/perovskite. In addition to the Voc, Jsc
(18.4 mA/cm? to 19.8 mA/cm?) and FF (0.72 to 0.76) were also slightly improved in the
CuSCN-based devices. The enhanced Jsc and FF can be interpreted as the consequence
of more efficient hole extraction and electron blocking of CUSCN than PEDOT:PSS. Note
that the high transmittance of CuSCN is another important reason for the improved Jsc of
devices. More importantly, the CuSCN-based device can possess an improved device
stability than the PEDOT:PSS-based one, as shown in Figure 14b.
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(b) Roles of Fullerene-based ETLs in Enhancing the Performance of HPSCs

Herein, we demonstrate a clear correlation between the charge-transporting properties of
fullerene-based ETLs and

photovoltaic performance
by systematically studying N e
three fullerenes, 1CeBA, L. &0y K
PCe1BM, and Ceso (Figure
15). We first verified the
electron mobility of the
studied fullerenes by field-
effect transistors (FETS).
The electron  mobility
gradually increases from 51 -
ICe0BA (6.9 x 10-3 cm?/Vs), 565956
to PCeBM (6.1 x 10° Figure 15. Device configuration of the PHJ HPSC and the chemical

cm?/Vs), to Ceo (1.6 | structures of the n-type fullerene derivatives, ICsoBA, PCs1BM and
cm2/Vs) due to the | Ceoin this study. The energy diagram of the each layer in devices.

increased conjugation of

fullerene core. To elucidate the influence of electron mobility of fullerene-based ETLs on
the photovoltaic performance of HPSCs, a conventional device configuration of
ITO/PEDOT:PSS (35-40 nm) / MAPDbIs (300 nm) / fullerenes (~60 nm)/Bis-Cso (10 nm)/Ag
(150 nm) was fabricated.®>-93 All the fullerene ETLs are spin-cast for fair comparison.
Impressively, the Ceo-based device afforded the highest PCEwmax of 15.44% with a Voc of
0.92V, a Jsc of 21.07 mA/cm?, and a FF of 0.80. The PCs1BM- and ICs0BA-based devices
showed PCEs of 13.37% (Voc: 0.89 V, Jsc: 18.85 mA/cm?, and FF: 0.80) and 8.06% (Voc:
0.95V, Jsc: 11.27 mA/cm?, and FF: 0.75), respectively. Interestingly, the ICeoBA-derived
device showed the highest Voc which can be rationalized from the fact that its LUMO is
the highest among the three fullerenes. Consequently, the Ceo-based HPSC should have
the smallest Voc of the three fullerenes because of Ceo’s low LUMO. However, the Ceo-
based HPSC showed a comparable Voc (0.92 V) to that of PCs1BM-based device (0.89
V). It can be envisaged that high Ceo electron mobility effectively reduces charge
recombination at the perovskite/Ceo interface and diminishes potential loss across this
interface. Besides, the hysteresis test of the studied devices was also performed. All the
devices presented very minor hysteresis at a low scan rate of 0.01 V/s, suggesting limited
charge traps at the perovskite interfaces (PEDOT:PSS/MAPbIs and MAPDlIs/fullerene).
The improved Jsc and FF of PCe1BM- and Ceo-based HPSCs can be interpreted as a
consequence of improved charge dissociation/transport at the perovskite/fullerene
interface arising from these fullerenes’ increased electron mobility. The very minor
hysteresis and high performance of HPSCs studied herein show that such charge
redistribution at the perovskite/fullerene interface may also passivate interfacial trap
states as well as reduce interfacial energy barrier. ° ° As a whole, this study more
comprehensively elucidated the complex roles of fullerenes in enhancing the performance
of HPSCs.%
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(c) TOPO surface Passivation leads to over 90% internal PLQY

Reducing non-radiative recombination in semiconducting materials is a prerequisite for
achieving the highest performance in light-emitting and photovoltaic applications. Here,
we characterize both external and internal photoluminescence quantum efficiency and
qguasi-Fermi-level splitting of surface-treated hybrid perovskite (CH3NHsPbls) thin films.

With respect to the material
bandgap, these passivated films
exhibit the highest quasi-Fermi-
level splitting measured to date,
reaching 97.1+0.7% of the
radiative limit, approaching that of
the highest performing GaAs solar

Control

d . cells. We confirm these values with
14 .
2 o s independent measurements  of
1. LES . .
R REEE “ internal photoluminescence

1.0

o w quantum efficiency of 91.9+2.7%
) under 1 Sun illumination intensity,
setting a new benchmark for these

Mg (%)

Nt (%)
3 3

0.6

0.4

- materials (Figure 16). These
00 0 results suggest hybrid perovskite
0.0 0.2 0.4 . 0.6 0.8 1.0 0.0 0.2 0.4 . 0.6 0.8 1.0 SO|ar Ce”S are Inherently Capable

Figure 16. a spatial map showing measured optical loss of further |nc.re“ases ,'n power
factors, L = 1 - Reflectivity = 1 - R, of the Au, Pd, Tiand Si CONVErsion efficiency |f_ surfa_ce
quadrants of the metal back-reflector substrate before passivation can be combined with

perovskite deposition. b,c, Spatial map showing nex: for a optimized charge carrier selective
typical control (b) and TOPO-treated (c) film deposited on jnterfaces®’.

the multi-metal back-reflector substrate. d,e, nex data as a

function of L for a control film and champion TOPO-treated

film, respectively. Error bars, shaded areas and black lines

are 95% confidence intervals over the spatial

heterogeneity in the data points, 95% confidence intervals

of the nonlinear regression, and nonlinear regression fits,

respectively.

Subtask 4.2. Development of Single-Junction HP Solar Cells

(a) Stabilized Large Bandgap Perovskite Solar Cells by Tin Substitution

The current development of high efficiency wide bandgap (1.7-1.8 eV) HP solar cells
utilizes controlled incorporation of Br into MAPDbIs or FAPDIs. The resultant compositionally
engineered MAPb(l1-yBry)s and FAPDb(l1-yBry)s perovskites possess tunable bandgaps of
1.57-2.29 eV and 1.48-2.23 eV, respectively. Despite many reported high efficiency
devices, light-induced instability was commonly observed under the operating conditions
(AM 1.5 illumination) for wide bandgap HP solar cells employing MAPb(l1-yBry)s and
FAPDb(l1-yBry)s perovskite compositions with Br content beyond 20% (y > 0.2).20 Under
illumination, the complex phase segregation into iodide- and bromide-rich perovskite
phases causes significant drop in photocurrent over time, which raises severe concerns
for stable long-term operation of these solar cells.®® % To develop an effective alternate
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approach, we introduced Sn into the highly unstable MAPDb(lo.sBro.4)s perovskite
composition to form MAPDb1-xSnx(lo.6Bro.4)s. An optimum of 25% Sn substitution was
identified based on the morphology and device performance. A combination of transient
absorption spectroscopy (TAS) and X-ray diffractometry (XRD) analysis demonstrated
elimination of phase segregation in MAPDbo.75Sno.25(lo.6Bro.4)s and the existence of single
stable phase under illumination. Introduction of Sn resulted in alteration of internal
bonding environment (both crystallite size and lattice microstrain), which subsequently
made the mixed halide perovskite less vulnerable to phase segregation during
photostriction under illumination and thus improved photostability. The efficacy and
versatility of this concept are further demonstrated by extending it to different Br contents
in the MAPbo.75Sno.2s(l1-yBry)s perovskite system (Figure 17). Finally, with the
consideration for tandem solar cell application, a MAPbo.75Sno.25(lo.4Bro.6)3 perovskite with
a bandgap of 1.73 eV and stable PCE of 12.59% was demonstrated. Devices not only
show constant photocurrent at maximum power point under 1 sun illumination (Figure
21d), but also can retain 95% of their original PCE after 30-day storage in inert
atmosphere. They also possess respectable thermal stability at 85 °C under inert
atmosphere.

a MAPD, 755N, 25(l4.,Bry);
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Figure 17. (a) Optical images, (b) absorption spectra, and (c) XRD spectra of MAPbo.75Sno.25(l1-yBry)3
perovskites with different Br content. (d) Typical J-V characteristics of MAPbo.75Sno.25(l1-yBry)s PVSCs
measured under AM 1.5 illumination.

(b) Stabilized Large Bandgap Perovskite Solar Cells by Cesium Substitution

Though we successfully eliminated photo-instability in MAPb(l1-yBry)s alloys by partial Sn
substitution as discussed above, the resultant MAPbo.7sSno.2s5(l1-yBry)3 alloys suffer from
low Voc. This is an indication of potentially poor optoelectronic quality of perovskite
absorbers. We observe that even the best performing (12.59% PCE) composition
MAPbo.75Sno.25(lo.6Bro.4)s show extremely low PLQY and longer iteration of signals (>30
min) or high intensity exposure (>100 Sun) under continuous illumination was inevitable
to get discernible signals.?® The poor emissivity is probably related to high material
disorder in the 75% Pb - 25% Sn alloys due to phase transition from 14cm to P4mm, in
accordance to previous reports.% This inherent limitation in material quality explains the
severely constrained Voc with partial Sn substitution. Therefore, as an alternate approach
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to overcome photoinstability without compromising optoelectronic quality, we chose to
engineer the lattice in an analogous manner, via partial replacement of MA by Cs. A series
of single junction PVSCs were fabricated with 0-20% Cs substitution in MAPDb(lo.6Bro.4)3
and we found that the device with 10% Cs showed the best device performance with high
Voo of 1.2 V, PCE of 12.5% and negligible J-V hysteresis (Figure 18a).
MAo0.9Cso.1Pb(lo.6Bro.4)s films were phase pure and exhibited relatively longer lifetime due
to improved crystallinity with Cs incorporation.'9* As expected, striking differences were
observed in photostability of MAPb(lo.6Bro.4)s and MAo.9Cso.1Pb(lo.6Bro.4)3-based PVSCs.
With Cs incorporation, devices were photostable and current density at the maximum
power point (MPP) was constant under continuous illumination (1 h), whereas devices
without Cs showed significant decay in less than 10 min of illumination (Figure 18b). This
stability under operating conditions is critical for 2-T tandem, where any change in subcell
behavior will impact current matching and significantly degrade tandem performance.
Optoelectronic quality and photovoltage losses were evaluated for MAo0.9Cso.1Pb(lo.6Bro.4)s
using time-resolved photoluminescence (TRPL) spectroscopy. Absolute PL intensity
spectra and absorbance are shown in the inset of Figure 18c and the Eg is 1.82 eV. A
relatively stable QFLS =1.23 eV was observed which correlates well with the device Voc
(Figure 23c). To enable monolithic tandem with CIS bottom cell, the top Ag electrode was
replaced with sputtered ITO which transmits unabsorbed light efficiently. The resultant
devices performed well and showed a Voc of 1.22 V, a Jsc of 12.1 mA cm™2, a FF of 0.69
and a PCE of 10.1% (Figure 18a), analogous to Ag electrode devices discussed above.
The drop in Jsc is reasonable considering an increased transmittance of long wavelength
light through top ITO. The device stack is unaffected during sputtering and the superior
performance of semitransparent devices without compromise in Voc ensures high
optoelectronic quality of sputtered ITO.
a b. c.
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Figure 18. (a) Typical J-V characteristics and (b) steady-state current under AM1.5 illumination at an
applied voltage corresponding to MPP of MAPb(lo.6Bro.4)s and MAo.eCso.1Pb(lo.6Bro.4)3s PVSCs. (c) Stabilized
quasi-Fermi level splitting of MAo.9Cso.1Pb(lo.6Bro.4)s with initial PL spectra and absorbance shown in figure
inset.

(c) PEA-Incorporated Large Eg Perovskites with Improved Optoelectronic Quality

Here, we demonstrate the effectiveness of phenylethylammonium (PEA) incorporation for
solving the inherent material challenges and minimizing the Vocloss in 1.8 eV Eg mixed-
halide hybrid PVSCs. We systematically tuned the composition by mixing MAPDb(lo.6Bro.4)3
and (PEA)2Pb(lo.6Bro.4)4 precursor solutions in different ratios to get the desired PEA
fraction (Figure 19a, b). As PEA fraction increases from PEAO to PEA20, Egincreases
subtly from 1.82 to 1.84 eV. With further increase in PEA fraction, Egincreases more
significantly and reaches 2.56 eV (PEA100) (Figure 19b). From XRD studies, it is evident
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that the fwhm increases due to continuous decrease in crystallite size from 112 + 9nm
(PEAOQ) to 23 = 1 nm (PEA20), and the contribution from strain is almost constant for
PEAO-PEA20 (Figure 19c). The decrease in crystallite size can be attributed to the
impeded growth by PEA-induced surface functionalization of perovskite crystallites,
where the large ammonium cations cannot be incorporated into the 3D lattice and act as
surface capping ligands!%?. Therefore, as the PEA fraction is increased, a decrease in the
crystallite size of 3D perovskite coupled with an increase in the formation of layered
perovskites are expected. PEA incorporation in MAPDb(lo.sBro.4)3 led to enhancements in
photostability as well as optoelectronic quality and improved the QFLS up to 1.35 eV
(Figure 19d). Based on insights from detailed structural and spectroscopic studies, we
infer that a combination of the decrease in crystallite size and L4 along with the
modification of grain boundaries by PEA ligands (anchoring on perovskite surfaces)
contribute to mitigation of phase segregation in PEA5-PEA20. Our results provide an
important validation for the emerging mechanistic picture and the current understanding
of phase segregation in mixed-halide perovskites. Subsequently with interface
optimization, PVSCs based on PEA-incorporated 1.80-1.85 eV Eg4 absorbers yielded
significantly improved Voc values of 1.30-1.35 V and were stable under illumination
(Figure 19d, e). The achieved Voc/Voc,SQ values of 0.85-0.87 surpass the photo-
voltage plateau in 1.8 eV Eg PVKSCs. This work has been published in Nano Letters1o3,
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Figure 19. (a) Photographs of films with 0 to 100% PEA fraction ([moles of PEA]/[moles of PEA + moles of
MA]) in MAPDb(lo.6Bro.4)s perovskite. (b) Definition of notations used to represent different compositions and
their associated Eq values. n equivalent corresponds to the number of metal-halide sheets sandwiched
between PEA cations if a pure 2D perovskite can be formed; 5- 40% PEA fractions here form quasi-2D
perovskite, which is a mixture of 3D and 2D perovskite phases with different n values. (c) Crystallite size
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and strain values obtained using Williamson-Hall analysis of peak broadening in powder samples. (d)
Comparison of quasi-Fermi level splitting (QFLS) and Voc values for PEAO-PEA20 devices with Ceo and
ICe0BA ETL. (e) PV performance metrics of PEAO-PEA20 devices with ICsoBA ETL.

(d) GA-alloying and interface engineering enables High Voc

The above work demonstrates improved bulk perovskite optoelectronic quality for both
the MAPDb(I,Br)s + PEAI and the (FA,GA,Cs)Pb(l,Br)3 system. In addition, the MAPb(1,Br)3
+ PEAI system demonstrates incredible interface quality — the AEF of the neat HP film is
quite close to both the AEF of HP film in contact with transport layers and the Voc.
However, one disadvantage of the 2D/3D system is reduction in Lo and Jsc. On the other
hand, the the (FA,GA,Cs)Pb(l,Br)s system gives provides higher Lo and adequate carrier
transport, but the interface quality is slightly lower (AEF is higher than attained Voc)?.
Interface recombination was reduced by replacing Ceso with ICBA (see Figure 20), yet
Vocs are still below the AEF of neat HP film. Thus, we fabricated a bilayer system, with
(FA,GA,Cs)PDb(1,Br)s bulk, then post treatment with PEAI to form a thin 2D/3D layer on
the top surface. This strategy has shown promise in achieving excellent interface quality
without significant loss in Lpo. With this strategy, we have achieved Vocs of 1.29V for a
1.75eV HP (88% of the Shockley-Queisser limit, see Figure 20. We are presently studying
this system further to realize its full potential and also reveal stability benefits of this bilayer
HP structure.
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Figure 20. AEF determined by wide-field PL imaging for completed FAGACs devices, with Cso as electron
transport layer (ETL) (left) and with ICBA and ETL (center). The brighter PL and higher AEr for ICBA case
indicates that there is less interface recombination, allowing for higher Voc. High Voc of 1.29V, or 88% of
SQ limit is demonstrated for 1.75eV GA-based HP solar cell with PEAI interface engineering (right).
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(e) Summary of Advances in High Bandgap Photovoltage Compared to Literature
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Figure 21. Voc presented as a fraction of the SQ limit appears to decrease with increasing bandgap.
Advance in photovoltage from our work are shown as stars, compared to other results in literature.

Task 5: Developing Interconnect Layers

The interconnect layer for a tandem solar cell must Re (Ocm®) | Ra (@) | R (isquare)
have low series resistance at the operating point and | [CuNioxati50°C| 0497 | 995 19.6
high transparency in the NIR to allow efficient | [Swhioxat200%¢| 0347 | 199 | 22

. Cu:NiOx at 225°C 0.59 11.8 219
operation of the bottom cell. We tested three HTMs PEDOT-PSS 0769 | 154 .
to determine their suitability in this regard: spiro- spiro-MeOTAD | 1. 2 | -
MeOTAD, PEDOT:PSS, and copper-doped nickel Table 1: Series and sheet resistance of

oxide (Cu:NiOy), all prepared on ITO (which is the | 1€ HTMS

top electron extracting contact for the CIGS bottom
cell). Figure 14 shows the location of the interconnect layer in a tandem device and the
architectures used for interconnect testing. We also considered the effect of annealing
temperature on the properties of these HTMs as the device stack will need to be annealed
after deposition of the interconnect layer. JV testing (Figure 22) showed all three to be
Ohmic. By taking the slope (m) of the positive bias region, we can determine the series
resistance. Table 1 gives the extracted values for Rs in both Q*cm? and Q. All of the HTMs
tested showed series resistances well below our targeted of 9.3 Q*cm?. The Cu:NiOx has
the lowest series and sheet resistance, therefore this is the HTM we further characterized
with UV-Vis spectroscopy. The shaded and bounded region in Figure 23 shows our target
of >70 %T between 750 and 1150 nm. Once again, all the HTMs beat the 70 %T goal,
with the low-temperature annealed Cu:NiOx being the best.
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Figure 23. Transmittance spectra of bare
ITO and Cu:NiOx/ITO annealed at different
temperatures

Figure 22. JV testing of Cu:NiOx annealed
at different temperatures, PEDOT:PSS and
spiro-MeOTAD

In conclusion, we have tested three different interconnects, meeting Milestone 5.1.
Additionally, all of our fabricated interconnects have J > 18 mA/cm?, Rs < 9.3 Q*cm?, and
%T > 70 between 750 and 1150 nm, meaning we have met and exceeded Milestone
5.2 which is also Go/No-Go 4. The low-temperature annealed Cu:NiOx/ITO is the best
on all metrics, and will be a focus of ongoing work.

Task 6: Development of Tandem Hybrid Perovskite / Chalcogenide Solar Cells

(a) Mechanically stacked Perovskite — CIGS tandem results

Solution-processed chalcopyrite and perovskite devices of various bandgaps are combined
in four- and two-terminal mechanically-stacked tandem architectures. The excellent low-light
performance of Cu(In,Ga)(S,Se)2 and low-bandgap Culn(S,Se): cells and the high efficiency
of novel NIR-transparent inverted perovskite cells with Ceo/bis-Ceo/ITO as electron transport
layers, enabled stabilized two- and four-terminal tandem efficiencies up to 18.5% and 18.8%,
respectively, which represent a

b 08 ; \' FAPU . .

. 7N\ ww | new record for tandem devices with
i;_'“' “=._ | solution-processed  chalcopyrite
Lo S LETS \ and  perovskite  absorbers®
P/ % T 11 (Figure 24).

* 02 ew /W7 4 Figure 24. (a) Photograph of a semi-

i 0 .'.'"‘;_'.i‘_':.“;".,", | transparent perovskite solar cell. (b)

0 o oo 3000 120 380 Transmission and squared absorbance
d TNy of perovskite filters used in Table 1. The

bandgaps are extracted to 1.51 eV, 1.59

§ | / 5 eV, and 1.70 eV for FAPbIs, MAPbls, and
E’Wt / §’° MAPbI24Bros, respectively. (¢ and
gim" —Cumays 3o i) —cwaso, | d)J(V) measurements of perovskite
: | AP S | wwew, | cells, CI(G)S devices, and CI(G)S
5304 g, =] Ef Samses devices with perovskite filters. (e and f)
| s, 2 w1 External quantum efficiency data of
T T e e s Wl herovskites and shaded chalcogenide
VoRkage (mV) Voltage (mV) cells that yielded the highest two-

terminal tandem PCEs in this paper
(projected PCE). Excellent current matching is obtained for Cu(Iln,Ga)(S,Se)2 and MAPDbI2.4Bros as well as
for Culn(S,Se)2 and MAPDIs, and Culn(S,Se)2 and FAPbIs, respectively.
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(b) Monolithic HP — CIGS tandems

To demonstrate the suitability of
our solution-processed  low-
bandgap CIS devices as bottom
cells in tandem applications, we
fabricated monolithic tandem
devices with solution-processed
perovskite top cells. Similar to
previously described, perovskite
devices were manufactured in an
inverted ITO/HTL/MAPDI:/Cs/bis-

Ce/cathode architecture  with
poly(3,4-
ethylenedioxythiophene)
polystyrene sulfonate

(PEDOT:PSS) or NiO«as hole
transport layer (HTL)*. While we
could effectively reduce the
absorber roughness of our CIS
bottom devices by employing a

6
5
"4_ MPP
3
2

Recipient Name: University of Washington

light

T CdS/ZnO/1TO

“CIS

d T T
ti0s) tstab.)

), (mAZcm12.0  14.5
1V vI 118 140 2
FF [%] 184 421 \

J|PCE (%] [2.62 8.54
MPP

tracking

%
.
-
<

'
w

_ 40.6_41-6
1.1 mA/fem’| | ¢

(V)

J

PP

Nt 773 mV

PCE(stab.): 8.55 %

=)
'
(=)

=
Voltage (V
< >
Current Density (mA/em’)

, Curlrcnl Density (mAr’cm’)

0.00.51.0 152025303540 4.;’“ -1.0 06 -02 02 06 1.0 1.4
Time (h) Voltage (V)

Figure 25. a) Schematic of monolithic HP-CIS tandem solar

cell. b) SEM cross section of tandem solar cell. ¢,d) Maximum

power point tracking shows improving and stabilizing active

=)

Cu-graded precursor approach area PCE from initial 2.6% up to 8.6% after 4 h.

(see Figure 25b), the increased roughness as compared to glass (2-5 nm) is still a
challenge for the PSC due to the inherent thin film nature of the involved functional layers.
To further reduce the likelihood of shunt paths in the PSC top cell via accidental anode
and cathode contact, the perovskite absorber thickness was increased from 180-220 to
550-600 nm and the Ceo electron transport layer (ETL) was thermally evaporated rather
than spin-coated to ensure conformal coverage. Current—voltage characterization under
ambient air conditions revealed a strong light-soaking behavior for tandems with both
HTLs. Figure 25c¢ shows the improving device parameters during maximum power point
(MPP) tracking under simulated AM1.5G light for a PEDOT:PSS-based tandem device.
Device performance was seen to stabilize at up to 8.55% after 4.5 h. A comparison of the
initial and stabilized J-V curve reveals key improvements through increasing FF with
MPP tracking (FFo = 18.4%, FF«. = 42.1%, see Figure 3d). Stabilized tandem V..'s of up
to 1.40 V are close to the added voltages of the individual cells (i.e., CIS: 518 mV,
PSC(PEDOT:PSS): 975 mV, sum: 1.49 V) which suggests a good monolithic contact
between top and bottom cells and low leakage currents. Notably, we were able to relate
the source for our poor FF to our semitransparent perovskite top cells. Poor morphologies
of HP layers, as seen in Figure 25b, that are likely caused by use of rough CIS substrates
might further exacerbate this issue. Further improvements in carrier diffusion lengths in
the HP via defect passivation or morphology improvements or the use of thinner HP
absorbers might remedy this problem and further increase tandem PCEs.
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(c) 2-terminal monolithic HP — HP tandems
We also integrated our
developed small and large
bandgap subcells to fabricate
2-terminal monolithic
perovskite-perovskite tandem
solar cells. Figure 5a shows the
cross-section scanning
electron microscopy (SEM)
image of a typical tandem cell
where clear  demarcation e
between layers are observed. u
J-V characteristics of the best :
performing 2-T tandem (Figure

26b) shows an exceptiona| Voc %400 500 600 700 800 90 1000 CIGS  Siicon Perovskite "

Wavelength (nm) Type of subcell in 2-T tandem with Perovskite

of 1.98 V, a Jsc of 12.7 MA Figure 26. a) Cross-section SEM of a characteristic monolithic
cm-2, and a FF of 0.73 tandem device. b) Typical J-V characteristics of 2-terminal tandem
resulting in a remarkable PCE solar cell along with that of the small- and large-bandgap single-
of 18.4%. The EQE of subcells junction solar cells with Ag electrode. c) EQE spectra of individual

. subcells in 2-terminal monolithic tandem. d) Fractional contribution
(Figure 26c) S‘_howed exce_llent of Voc and associated losses with respect to bandgap for different
current matching as predicted state-of-art tandem solar cells, where perovskite is monolithically
by optical simulations and integrated with other photovoltaic technologies.

integrated currents agree well

with the Jsc obtained from J-V characteristics. The reliability of PCE was further confirmed
by measuring the steady-state current output at MPP (1.55 V) which provided a stabilized
efficiency of 18.5%. An absolute PCE improvement of 4% is realized compared to single-
junction device (Figure 5b). A large Voc (1.98 V) close to the sum of subcell Voc's realized
for tandem cell manifests the effectiveness of rational design in our work. This is a
significant improvement com- pared to previously reported Voc (1.66 V) for similar
bandgap- matched 2-T perovskite tandem*. To provide broader outlook, the 2-T
perovskite tandem developed here was also compared with other state-of-the-art series
connected tandem cells (Figure 5d), where PVSC is seamlessly coupled with another PV
technology (organic photovoltaic (OPV), copper indium gallium selenide (CIGS), and
Silicon). The 2-T perovskite tandem developed here has a nonideal loss fraction (=17%)
lower than the record silicon-perovskite tandem and the realized Voc (1.98 V)
corresponds to an impressive =80% of the theoretical limit (Figure 26d).
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Conclusions:

The project successfully achieved all go/no-go metrics and fully met 27 of the 34
milestones. The remaining 7 milestones were achieved partially. In the process of
achieving these milestones, the project revealed deeper understanding of the
optoelectronic quality, morphology and phase control, interface passivation, and device
fabrication of hybrid perovskites. Some of the key achievements were:

Development of higher-performance high-bandgap (1.75 eV) perovskite materials
and devices. In particular, we explored tens-of-thousands of compositions for high
bandgap perovskites, achieving quasi-Fermi level splitting of 1.35 eV fora 1.75 eV
bandgap material. We achieved World-record open circuit voltages from single
junction p-i-n devices, 1.24 V from 1.75 eV bandgap material, which is what is
preferable for tandems with a PCE of 14.3% using a guanidinium/formanadinium/
cesium alloyed lead iodobromide. We also developed a series of World-record
efficiency devices at higher band-gaps based on 2D/3D perovskites using PEA.

Development of higher-performance low-bandgap (1.35 eV) perovskite materials
and devices. In particular, we developed a 1.35 eV bandgap perovskite of
composition MAPbo.sSno.s(lo.sBro.2)s and showed its superiority to MAPDo.75Sno.2sl3.
High efficiency solar cells were fabricated using PEDOT:PSS and doped-ICBA as
HTL and ETL, respectively. Short circuit currents of 25.7 mA/cm? and PCEs of
17.1% were obtained.

Development of mechanically stacked 4-terminal CIGS-Perovskite tandems with
PCE of 18.8% and monolithic 2-terminal CIGS-Perovskite tandems with PCE of
8.5%. The low efficiency of the monolithic device is a result of the high surface
roughness of the solution processed CIGS bottom cells. This is not an intrinsic
problem for CIGS-perovskite tandems, but does mean that smooth evaporated or
sputtered CIGS films likely need to be used, unless a polishing step is employed.

Development of monolithic 2-terminal Perovskite-Perovskite tandems with a
stabilized PCE of 18.5%. This was the World-record perovskite-perovskite
monolithic tandems for over a year in 2017-2018.

Revealing that light is not an essential component of the so-called “light-induced”
phase segregation. By using charge injection in the dark and electroluminescence,
we showed that the presence of electrons in the conduction band and hole in the
valence band is sufficient to drive the nearly ubiquitously observed phase
segregation in high bandgap perovskites.

Development of a new method to simultaneously measure absolute intensity
photoluminescence and photoconductivity and use them to obtain simultaneous
in-situ measurement of quasi-Fermi level splitting and diffusion length. This is
important since it provides a proxy for device Voc and device Jsc.
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Budget and Schedule:

The federal share of the budget was $1.5M. The University of Washington contributed a
cost share of $167k. Both the federal share and cost share were fully spent with no
deviations from the spend plan.

Path Forward:

The perovskite-silicon tandem record has now reached a certified efficiency of 27.3%
(OxfordPV), which exceeds the record for a single junction silicon solar cell. This success
shows the increasing potential benefit of using perovskites in multi-junction devices,
whether with Si, CIGS, or in a perovskite-perovskite tandem configuration. We believe
the most important topics to pursue in order to insure that such tandems have a significant
impact on the energy future are:

1. Assessment and improvement of long term stability of perovskite devices when
subject to environmental stresses of oxygen and humidity and operational stresses
of electric fields and excess (non-equilibrium) electron and hole populations.

2. Deeper understanding of factors limiting the device performance for high bandgap
(1.75-1.85eV) and low bandgap (1.20-1.30eV) HPs

3. Advances in interface engineering to realize further improvement in device
efficiencies.

4. Employing lower dimensional perovskites to further enhance perovskite stability.

The work conducted under this award provides a strong foundation to enable continued
advances in each of these thrusts. In particular, perovskite-perovskite tandems may have
significant impact on the future of solar energy conversion to electricity. Although the
highest efficiency perovskite-perovskite tandem that we have reported had a PCE of
18.5%, we have significantly improved our top and bottoms cell technology since focusing
on perovskite-perovskite tandems. Combination of our best perovskite top and bottom
cell would yield 2-terminal efficiency of about 24%. This would be a substantial
improvement and set a new World-record. Whether by us or others, we believe that the
high bandgap GA/FA/Cs perovskites and the PEA-based 2D/3D perovskites that we have
developed along with the low bandgap Pb-Sn devices we have developed should be
developed further an integrated into a fully optimized tandem.

However, the most significant challenge for perovskites is stability. If devices cannot
survive 20-30 years with year-over-year degradation rates of ~1%, then they will have
limited impact on the energy sector. Thus, we believe that it is imperative that additional
research be devoted to this topic. Standardized accelerated aging tests need to be
developed that probe the stability of the material to the simultaneous presence of oxygen
humidity, and light, and the cycling through light/dark periods. New methods developed
under this award, specifically the photoluminescence-photoconductivity method to
simultaneously determine QFLS and diffusion length, provide a way to rapidly assess
material stability and isolate interface problems.
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