Nanostructured GaN Nucleation Layer for Light-Emitting Diodes
- North Carolina State University
- University of North Carolina, Chapel Hill
- ORNL
This paper addresses the formation of nanostructured gallium nitride nucleation (NL) or initial layer (IL), which is necessary to obtain a smooth surface morphology and reduce defects in h-GaN layers for light-emitting diodes and lasers. From detailed X-ray and HR-TEM studies, researchers determined that this layer consists of nanostructured grains with average grain size of 25 nm, which are separated by small-angle grain boundaries (with misorientation 1 ), known as subgrain boundaries. Thus NL is considered to be single-crystal layer with mosaicity of about 1 . These nc grains are mostly faulted cubic GaN (c-GaN) and a small fraction of unfaulted c-GaN. This unfaulted Zinc-blende c-GaN, which is considered a nonequilibrium phase, often appears as embedded or occluded within the faulted c-GaN. The NL layer contained in-plane tensile strain, presumably arising from defects due to island coalescence during Volmer-Weber growth. The 10L X-ray scans showed c-GaN fraction to be over 63% and the rest h-GaN. The NL layer grows epitaxially with the (0001) sapphire substrate by domain matching epitaxy, and this epitaxial relationship is remarkably maintained when c-GaN converts into h-GaN during high-temperature growth.
- Research Organization:
- Oak Ridge National Laboratory (ORNL)
- Sponsoring Organization:
- SC USDOE - Office of Science (SC)
- DOE Contract Number:
- AC05-00OR22725
- OSTI ID:
- 931814
- Journal Information:
- Journal of Nanoscience and Nanotechnology, Journal Name: Journal of Nanoscience and Nanotechnology Journal Issue: 8 Vol. 7
- Country of Publication:
- United States
- Language:
- English
Similar Records
Electron microscopy characterization of GaN films grown by molecular-beam epitaxy on sapphire and SiC
Impact of growth temperature, pressure and strain on the morphology of GaN films