skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides

Abstract

The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes bymore » its affinity to the N-terminus of P3-9.« less

Authors:
; ; ;
Publication Date:
Research Org.:
State Univ. of New York, Stony Brook
OSTI Identifier:
6267082
Resource Type:
Journal Article
Resource Relation:
Journal Name: Virology; (United States); Journal Volume: 128
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; CELL MEMBRANES; STRUCTURAL CHEMICAL ANALYSIS; POLIO VIRUS; NUCLEIC ACID REPLICATION; AMINO ACID SEQUENCE; ANTIBODIES; BIODEGRADATION; ENZYMES; HELA CELLS; MOLECULAR BIOLOGY; POLYPEPTIDES; RADIOIMMUNOASSAY; RNA; TRYPSIN; CELL CONSTITUENTS; CHEMICAL REACTIONS; DECOMPOSITION; HYDROLASES; ISOTOPE APPLICATIONS; MEMBRANES; MICROORGANISMS; MOLECULAR STRUCTURE; NUCLEIC ACIDS; ORGANIC COMPOUNDS; PARASITES; PEPTIDE HYDROLASES; PEPTIDES; PROTEINS; RADIOASSAY; SERINE PROTEINASES; TRACER TECHNIQUES; VIRUSES; 550201* - Biochemistry- Tracer Techniques

Citation Formats

Takegami, T., Semler, B.L., Anderson, C.W., and Wimmer, E.. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. United States: N. p., 1983. Web. doi:10.1016/0042-6822(83)90316-1.
Takegami, T., Semler, B.L., Anderson, C.W., & Wimmer, E.. Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides. United States. doi:10.1016/0042-6822(83)90316-1.
Takegami, T., Semler, B.L., Anderson, C.W., and Wimmer, E.. Sat . "Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides". United States. doi:10.1016/0042-6822(83)90316-1.
@article{osti_6267082,
title = {Membrane fractions active in poliovirus RNA replication contain VPg precursor polypeptides},
author = {Takegami, T. and Semler, B.L. and Anderson, C.W. and Wimmer, E.},
abstractNote = {The poliovirus specific polypeptide P3-9 is of special interest for studies of viral RNA replication because it contains a hydrophobic region and, separated by only seven amino acids from that region, the amino acid sequence of the genome-linked protein VPg. Membraneous complexes of poliovirus-infected HeLa cells that contain poliovirus RNA replicating proteins have been analyzed for the presence of P3-9 by immunoprecipitation. Incubation of a membrane fraction rich in P3-9 with proteinase leaves the C-terminal 69 amino acids of P3-9 intact, an observation suggesting that this portion is protected by its association with the cellular membrane. These studies have also revealed two hitherto undescribed viral polypeptides consisting of amino acid sequences of the P2 andf P3 regions of the polyprotein. Sequence analysis by stepwise Edman degradation show that these proteins are 3b/9 (M/sub r/77,000) and X/9 (M/sub r/50,000). 3b/9 and X/9 are membrane bound and are turned over rapidly and may be direct precursors to proteins P2-X and P3-9 of the RNA replication complex. P2-X, a polypeptide void of hydrophobic amino acid sequences but also found associated with membranes, is rapidly degraded when the membraneous complex is treated with trypsin. It is speculated that P2-X is associated with membranes by its affinity to the N-terminus of P3-9.},
doi = {10.1016/0042-6822(83)90316-1},
journal = {Virology; (United States)},
number = ,
volume = 128,
place = {United States},
year = {Sat Jan 01 00:00:00 EST 1983},
month = {Sat Jan 01 00:00:00 EST 1983}
}
  • Poliovirus 3CD is a multifunctional protein that serves as a precursor to the protease 3Cpro and the viral polymerase 3Dpol and also plays a role in the control of viral replication. Although 3CD is a fully functional protease, it lacks polymerase activity. We have solved the crystal structures of 3CD at a 3.4- Angstroms resolution and the G64S fidelity mutant of 3Dpol at a 3.0- Angstroms resolution. In the 3CD structure, the 3C and 3D domains are joined by a poorly ordered polypeptide linker, possibly to facilitate its cleavage, in an arrangement that precludes intramolecular proteolysis. The polymerase active sitemore » is intact in both the 3CD and the 3Dpol G64S structures, despite the disruption of a network proposed to position key residues in the active site. Therefore, changes in molecular flexibility may be responsible for the differences in fidelity and polymerase activities. Extensive packing contacts between symmetry-related 3CD molecules and the approach of the 3C domain's N terminus to the VPg binding site suggest how 3Dpol makes biologically relevant interactions with the 3C, 3CD, and 3BCD proteins that control the uridylylation of VPg during the initiation of viral replication. Indeed, mutations designed to disrupt these interfaces have pronounced effects on the uridylylation reaction in vitro.« less
  • No abstract prepared.
  • A partial amino-terminal amino acid sequence of each of the major proteins encoded by the replicase region of the poliovirus genome has been determined. A comparison of this sequence information with the amino acid sequence predicted from the RNA sequence that has been determined for the 3' region of the poliovirus genome has allowed us to locate precisely the proteolytic cleavage sites at which the initial polyprotein is processed to create the poliovirus products P3-1b (NCVP1b), P3-2 (NCVP2), P3-4b (NCVP4b), and P3-7c (NCVP7c). For each of these products, as well as for the small genome-linked protein VPg, proteolytic cleavage occursmore » between a glutamine and a glycine residue to create the amino terminus of each protein. This result suggests that a single proteinase may be responsible for all of these cleavages. The sequence data also allow the precise positioning of the genome-linked protein VPg within the precursor P3-1b just proximal to the amino terminus of polypeptide P3-2.« less
  • Transcriptionally active replication complexes bound to smooth membrane vesicles were isolated from poliovirus-infected cells. In electron microscopic, negatively stained preparations, the replication complex appeared as an irregularly shaped, oblong structure attached to several virus-induced vesicles of a rosettelike arrangement. Electron microscopic immunocytochemistry of such preparations demonstrated that the poliovirus replication complex contains the proteins coded by the P2 genomic region (P2 proteins) in a membrane-associated form. In addition, the P2 proteins are also associated with viral RNA, and they can be cross-linked to viral RNA by UV irradiation. Guanidine hydrochloride prevented the P2 proteins from becoming membrane bound but didmore » not change their association with viral RNA. The findings allow the conclusion that the protein 2C or 2C-containing precursor(s) is responsible for the attachment of the viral RNA to the vesicular membrane and for the spatial organization of the replication complex necessary for its proper functioning in viral transcription. A model for the structure of the viral replication complex and for the function of the 2C-containing P2 protein(s) and the vesicular membranes is proposed.« less
  • A synthetic heptapeptide corresponding to the C-terminal sequence of the poliovirus genome protein (VPg) has been linked to bovine serum albumin and used to raise antibodies in rabbits. These antibodies precipitate not only VPg but also at least two more virus-specific polypeptides. The smaller polypeptide, denoted P3-9 (12,000 daltons), has been mapped by Edman degradation and by fragmentation with cyanogen bromide and determined to be the N-terminal cleavage product of polypeptide P3-1b, a precursor to the RNA polymerase. P3-9 contains the sequence of the basic protein VPg (22 amino acids) at its C terminus. As predicted by the known RNAmore » sequence of poliovirus, P3-9 also contains a hydrophobic region of 22 amino acids preceding VPg, an observation suggesting that P3-9 may be membrane-associated. This was confirmed by fractionation of infected cells in the presence or absence of detergent. We speculate that P3-9 may be the donor of VPg to RNA chains in the membrane-bound RNA replication complex.« less