The effect of stress on the nanomechanical properties of Au surfaces
Conference
·
OSTI ID:431161
Stress in thin films plays a critical role in many technologically important areas. The role is a beneficial one in strained layer superlattices where semiconductor electrical and optical properties can be tailored with film stress. On the negative side, residual stress in thin-film interconnects in microelectronics can lead to cracking and delamination. In spite of their importance, however, surface and thin-film stresses are difficult to measure and control, especially on a local level. In recent studies, we used the Interfacial Force Microscope (IFM) in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In recent measurements on two of the original substrate materials we found a direct correlation between the nanomechanical values and the residual stress in the films, as measured globally by a wafer warping technique. In the present paper, we review these earlier results and show recent measurements dealing with stresses externally applied to the films which supports our earlier conclusion concerning the role of stress on our measurements. In addition, we present very recent results concerning morphological effects on nanomechanical properties which add additional support to the suggestion that near-threshold indentation holds promise of being able to measure stress on a very local level.
- Research Organization:
- Sandia National Labs., Albuquerque, NM (United States)
- Sponsoring Organization:
- USDOE Office of Energy Research, Washington, DC (United States)
- DOE Contract Number:
- AC04-94AL85000
- OSTI ID:
- 431161
- Report Number(s):
- SAND--97-0110C; CONF-961202--23; ON: DE97002461
- Country of Publication:
- United States
- Language:
- English
Similar Records
Near-plastic threshold indentation and the residual stress in thin films
Correlation of film stress and the mechanical response of Au thin films
Nanomechanics of hard films on compliant substrates.
Conference
·
Mon Jul 01 00:00:00 EDT 1996
·
OSTI ID:266734
Correlation of film stress and the mechanical response of Au thin films
Conference
·
Mon Dec 30 23:00:00 EST 1996
·
OSTI ID:468925
Nanomechanics of hard films on compliant substrates.
Technical Report
·
Tue Sep 01 00:00:00 EDT 2009
·
OSTI ID:993624