skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of stress on the nanomechanical properties of Au surfaces

Abstract

Stress in thin films plays a critical role in many technologically important areas. The role is a beneficial one in strained layer superlattices where semiconductor electrical and optical properties can be tailored with film stress. On the negative side, residual stress in thin-film interconnects in microelectronics can lead to cracking and delamination. In spite of their importance, however, surface and thin-film stresses are difficult to measure and control, especially on a local level. In recent studies, we used the Interfacial Force Microscope (IFM) in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In recent measurements on two of the original substrate materials we found a directmore » correlation between the nanomechanical values and the residual stress in the films, as measured globally by a wafer warping technique. In the present paper, we review these earlier results and show recent measurements dealing with stresses externally applied to the films which supports our earlier conclusion concerning the role of stress on our measurements. In addition, we present very recent results concerning morphological effects on nanomechanical properties which add additional support to the suggestion that near-threshold indentation holds promise of being able to measure stress on a very local level.« less

Authors:
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Energy Research, Washington, DC (United States)
OSTI Identifier:
431161
Report Number(s):
SAND-97-0110C; CONF-961202-23
ON: DE97002461; TRN: 97:001016
DOE Contract Number:  
AC04-94AL85000
Resource Type:
Conference
Resource Relation:
Conference: 1996 Fall meeting of the Materials Research Society (MRS), Boston, MA (United States), 2-6 Dec 1996; Other Information: PBD: 1996
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; GOLD; MECHANICAL PROPERTIES; ADHESION; GRAIN SIZE; OPTICAL PROPERTIES; ROUGHNESS; SHEAR; STRESSES; SUPERLATTICES; THIN FILMS; CRACKS; GLASS; SILICON; MICA; SUBSTRATES

Citation Formats

Houston, J E. The effect of stress on the nanomechanical properties of Au surfaces. United States: N. p., 1996. Web.
Houston, J E. The effect of stress on the nanomechanical properties of Au surfaces. United States.
Houston, J E. 1996. "The effect of stress on the nanomechanical properties of Au surfaces". United States. https://www.osti.gov/servlets/purl/431161.
@article{osti_431161,
title = {The effect of stress on the nanomechanical properties of Au surfaces},
author = {Houston, J E},
abstractNote = {Stress in thin films plays a critical role in many technologically important areas. The role is a beneficial one in strained layer superlattices where semiconductor electrical and optical properties can be tailored with film stress. On the negative side, residual stress in thin-film interconnects in microelectronics can lead to cracking and delamination. In spite of their importance, however, surface and thin-film stresses are difficult to measure and control, especially on a local level. In recent studies, we used the Interfacial Force Microscope (IFM) in a nanoindenter mode to survey the nanomechanical properties of Au films grown on various substrates. Quantitative tabulations of the indentation modulus and the maximum shear stress at the plastic threshold showed consistent values over individual samples but a wide variation from substrate to substrate. These values were compared with film properties such as surface roughness, average grain size and interfacial adhesion and no correlation was found. However, in a subsequent analysis of the results, we found consistencies which support the integrity of the data and point to the fact that the results are sensitive to some property of the various film/substrate combinations. In recent measurements on two of the original substrate materials we found a direct correlation between the nanomechanical values and the residual stress in the films, as measured globally by a wafer warping technique. In the present paper, we review these earlier results and show recent measurements dealing with stresses externally applied to the films which supports our earlier conclusion concerning the role of stress on our measurements. In addition, we present very recent results concerning morphological effects on nanomechanical properties which add additional support to the suggestion that near-threshold indentation holds promise of being able to measure stress on a very local level.},
doi = {},
url = {https://www.osti.gov/biblio/431161}, journal = {},
number = ,
volume = ,
place = {United States},
year = {Tue Dec 31 00:00:00 EST 1996},
month = {Tue Dec 31 00:00:00 EST 1996}
}

Conference:
Other availability
Please see Document Availability for additional information on obtaining the full-text document. Library patrons may search WorldCat to identify libraries that hold this conference proceeding.

Save / Share: