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ABSTRACT

Preparing for the deployment of large scientific and engineering
codes on upcoming exascale systems with GPU-dense nodes is
made challenging by the unprecedented diversity of device archi-
tectures and heterogeneous programming models. In this work,
we evaluate the process of porting a massively parallel, fluid dy-
namics code written in CUDA to SYCL, HIP, and Kokkos with a
range of backends, using a combination of automated tools and
manual tuning. We use a proxy application along with a custom
performance model to inform the results and identify additional
optimization strategies. At scale performance of the programming
model implementations are evaluated on pre-production GPU node
architectures for Frontier and Aurora, as well as on current NVIDIA
device-based systems Summit and Polaris. Real-world workloads
representing 3D blood flow calculations in complex vasculature are
assessed. Our analysis highlights critical trade-offs between code
performance, portability, and development time.
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1 INTRODUCTION

The rise of heterogeneous architectures in supercomputing plat-
forms (e.g., Aurora, Summit, and Frontier) makes achieving per-
formance portability across device types critical. The transition
from predominantly NVIDIA GPU-based platforms of previous
generations to new systems built around Intel (Aurora) and AMD
(Frontier) GPUs means that HPC users will have to translate kernels
written in CUDA to alternative programming languages supported
on these devices. Vendors have developed software infrastructure
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centered around different programming models and associated com-
pilers tailored to their hardware. For instance, Intel has created the
oneAPI software ecosystem, which includes the Data Parallel C++
(DPC++) compiler derived from the SYCL standard. Codes targeting
Frontier GPUs will interact with AMD’s ROCm programming envi-
ronment through the Heterogeneous Interface for Portability (HIP).
Users will also be able to choose from alternative heterogeneous
programming frameworks such as Kokkos, which includes an ever-
growing list of supported backends that includes CUDA, HIP, and
SYCL, among others. Faced with the many choices of programming
models and device architectures, developers of high performance
computing (HPC) applications will have to decide how best to write
code to maintain longevity, high performance, and portability. Se-
lecting a programming model for a given application and hardware
specification requires a detailed comparative analysis. The use of
automated porting tools, proxy applications, and predictive perfor-
mance models facilitates this iterative procedure (shown in Fig. 1)

In light of the growing demand for GPU-accelerated supercom-
puting platforms, there is an urgent need for effective strategies
for porting existing codebases to these platforms. In this paper, we
address this challenge by systematically evaluating the SYCL, HIP,
and Kokkos programming models on both current and upcoming
GPU-centric supercomputing platforms. By analyzing the porting
procedure and the resulting performance, we identify the trade-offs
involved in porting a real-world, CUDA-based code for a production
workflow. Our results demonstrate the strengths and weaknesses of
each programming model and hardware configuration and provide
insights into the most effective strategies for achieving performance
portability in a range of computing environments. The primary
contributions of this work are as follows.

(1) The development of a custom GPU performance model capa-
ble of predicting upper bounds on application performance
for different problem sizes on any given node architecture

(2) Comparative analysis of scaling performance of SYCL, HIP,
and Kokkos programming models on pre-production GPU
node architectures

(3) Analyzing trade-offs between performance portability and
porting times for the SYCL, HIP, and Kokkos programming
models on different GPU architectures

(4) Insights into the applicability of automated tools for porting
legacy CUDA codes to SYCL and HIP programming models

(5) Identification of the benefits and limitations of each pro-
gramming model

(6) Evaluation of the impact of hardware architecture on the
choice of programming model and code performance

In summary, this study makes important contributions to the field
of GPU-accelerated computing by providing practical guidance for
developers seeking to optimize code for a diverse range of GPU-
centric supercomputing platforms. Ultimately, this study provides
a roadmap for achieving strong performance portability across a
range of GPU-accelerated computing environments, with important
implications for the broader field of high-performance computing.

Martin, et al.

2 RELATED WORK

Recent studies have investigated the performance portability of
various programming models on a variety of accelerator devices,
including those from AMD, NVIDIA, and Intel [5, 10, 11, 14, 15].
Other experiences with using automated tools such as Intel’s DPCT
or AMD’s HIPify to port legacy CUDA codes have been documented
by multiple study authors [1, 3, 11]. However, there are some limita-
tions to these previous works that are overcome in the present study.
First, previous works have typically looked only at benchmark pro-
grams or mini-apps, which often do not exhibit the same behavior
as a full-scale application. Second, while multiple studies have per-
formed comparisons involving CUDA, HIP, SYCL, or Kokkos, to
our knowledge, there has not been a study examining them all
together on exascale hardware. Previous works that included Intel
devices in their comparisons have used integrated graphics cards
such as the Intel UHD Graphics P630, whereas in this study we
show detailed performance results of a real-world application using
Intel’s forthcoming Ponte Vecchio (PVC) GPUs that will be used in
the upcoming Aurora supercomputer.

3 APPLICATION OVERVIEW

This work evaluates performance portability using HARVEY [19], a
massively parallel blood flow (hemodynamic) simulation software
based on the lattice Boltzmann method (LBM) for fluid dynamics
[20]. Advantages of LBM over other numerical solvers of the Navier-
Stokes equations include its amenability to parallelization due to
its underlying stencil structure and the local availability of physical
quantities, eliminating the need for global communication among
processors required of Poisson solvers [18].

The LBM models a fluid by tracking fictitious particles that repre-
sent probability distributions in the velocity space on a lattice grid
structure. The algorithm consists of two main steps, collision and
streaming. The collision step is a local operation, whereas stream-
ing involves transferring particle populations between neighboring
nodes in the lattice.

3.1 Simulation Inputs

To evaluate the performance of the different programming models,
we performed simulations using HARVEY on two different input
geometries. The first is a cylinder, which we use as a benchmark
against our proxy application (described in the next section, see
Fig. 2b for a description of the geometry). The second is a patient-
derived aorta, which we selected to represent a real-world workload
(as shown in Fig. 2a).

3.2 Proxy Application

Here we use an open source proxy application based on the LBM
[17]. This code was developed to explore the performance-limiting
aspects of HARVEY in a simplified environment that facilitates
rapid prototyping on new systems and helps gauge the performance
bounds of the full-scale application. We define performance as
millions of fluid lattice updates per second (MFLUPS), which is a
representative performance measure for LBM-based codes [19].
The proxy application solves a cylindrical channel flow problem
depicted in Fig. 2b, characterized by an axial length of 84x and a
radius of 8x, where x is a scale factor specified by the user. The fluid
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Figure 1: Overview of the performance portability study, which aims to evaluate the effectiveness of different programming
models and hardware configurations for a real workload. This diagram illustrates the diverse range of programming models
and hardware platforms investigated, as well as the iterative optimization process.

(a) (b) | >

Figure 2: Geometries used for performance testing. (a) An
image-derived geometry of a human aorta provides a realis-
tic, pulsatile hemodynamic workflow for testing. Shown here
are representative results with the domain shaded by pres-
sure and streamlines indicating flow paths. (b) A cylindrical
domain is used as an idealized test case for direct comparison
between the LBM proxy app and production code.

inside the cylinder is computed and the nodal bounce is applied to
the points of the channel wall [2].

4 HARDWARE OVERVIEW

The performance of the HARVEY and LBM proxy app codes is
evaluated on several supercomputing systems, including Sunspot
(Argonne National Laboratory), Crusher (Oak Ridge National Labo-
ratory), Polaris (Argonne National Laboratory), and Summit (Oak
Ridge National Laboratory). Sunspot is a Test and Development
System for the upcoming Aurora system, with 128 nodes that each
contain two 52-core Intel Xeon CPU Max Series (codename Sap-
phire Rapids) and six Intel Data Center GPU Max Series (codenamed
Ponte Vecchio or PVC). Each PVC consists of two tiles that can be
treated as subdevices and bound by individual MPI ranks, giving a
total of 12 tiles (GPUs) per node. Crusher is an early-access testbed
for the Frontier system, with 128 compute nodes that each have a
single 64-core AMD EPYC 7A53 CPU and four AMD MI250X, each
with two Graphics Compute Dies (GCDs) which act as separate
GPUs, making for eight logical GPUs per node. Polaris is a system
with 560 nodes based on the HPE Apollo 6500 Gen 10+ system. Each
node has a single 2.8 GHz AMD EPYC Milan 7543P 32-core CPU
with 512 GB of DDR4 RAM and four NVIDIA A100 GPUs connected
via NVLink. Summit is an IBM system with 4,600 nodes, and each
Summit node has two IBM POWER9 22-core CPUs and 6 NVIDIA
V100 GPUs connected via NVLink. See Table 1 for a summary of
all hardware specifications.

5 PROGRAMMING MODELS

Below we outline the programming models and frameworks em-
ployed in this study.
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Table 1: System node characteristics. “Reported GPU memory bandwidth collected using BabelStream.
System Sunspot Crusher Polaris Summit
CPU 2x Xeon Max 1x EPYC 7A53 1x EPYC 7543P 2x POWER9
Cores/CPU 52 64 32 21
GPU 12x PVC Tiles (6 GPUs) 8x MI250X GCDs (4 GPUs) 4x A100 GPUs 6x V100 GPUs
GPU Memory 64 GB 64 GB 40 GB 16 GB
GPU Mem. Bandwidth* 0.997 TB/s 1.28 TB/s 1.30 TB/s 0.770 TB/s
GPU-CPU Interface PCle Gen5 (128 GB/s) [8]  Infinity Fabric CPU-GPU (72 GB/s) NVLink (64 GB/s) NVLink (50 GB/s)
Interconnect Slingshot 11 (25 GB/s) [7]  4x HPE Slingshot (100 GB/s) [9] Slingshot (25 GB/s) [6] IB (25 GB/s)
5.1 CUDA platforms. Additionally, there are active projects currently under-

The CUDA programming model has almost become synonymous
with GPU programming due to the ubiquity of NVIDIA devices on
HPC platforms. With CUDA, users write data parallel kernels tar-
geting NVIDIA GPUs, which are then launched on grids of thread
blocks having user-defined dimensions. In traditional CUDA pro-
gramming, device allocations referenced by C-style pointers are
managed explicitly by the user and passed to device kernels. Since
the introduction of CUDA 6.0, programmers can forgo explicit
memory copies through the use of managed or unified memory
allocations. The device code is compiled by a dedicated CUDA C
compiler (NVCC). This allows for fine-grained control over the
GPU’s hardware resources, enabling developers to optimize their
codes for the specific architecture of the NVIDIA GPU. In this study,
our CUDA codes were executed on the Summit (NVIDIA V100) and
Polaris (NVIDIA A100) systems.

5.2 SYCL

SYCL (from the Khronos SYCL standard) is a single source, hetero-
geneous programming model based on modern C++, designed for
offload acceleration. In SYCL, kernels and data transfers are submit-
ted to queues, which provide a concurrency mechanism similar to
the function of CUDA streams. Kernels are defined using lambdas
or functors and executed over workgroups that serve a purpose
analogous to CUDA thread blocks. SYCL memory abstractions in-
clude unified shared memory (USM) and buffers. Buffers provide
an abstract view of memory and are accessed indirectly through
accessor objects in the host or device code. USM is pointer-based
and is more familiar to users of CUDA C++. USM space arrays are
allocated through SYCL functions and can be explicitly or implic-
itly managed by the user through host-device transfers or runtime
management. The DPC++ compiler is Intel’s implementation of
SYCL, bundled with the Intel oneAPI toolkit, with support for CPUs,
GPUs, and FPGAs, including a few extensions. Simulations using
the SYCL implementations of HARVEY and the LBM proxy app
were conducted on the Sunspot (Intel PVC), Polaris (NVIDIA A100),
and Crusher (AMD MI250X) systems.

5.3 HIP

The HIP programming model is a C++ runtime API and program-
ming language developed by AMD that shares a similar syntax to
CUDA. Like CUDA, HIP launches kernels over grids of threads di-
vided into thread blocks. Like SYCL, HIP is designed with portability
in mind and is able to run on other architectures including NVIDIA

way to extend support for other backends, with a notable example
being chipStar [23], an LLVM-based compiler with limited support
for running HIP (and CUDA) on platforms that support SPIR-V as
the device intermediate language, which includes Aurora hardware.
In this work, performance runs of the HIP implementations were
carried out on Crusher (AMD MI250X), Summit (NVIDIA V100),
and Sunspot (Intel PVC).

5.4 Kokkos

Kokkos is a C++ library developed by Sandia National Laborato-
ries to provide performance portability for scientific applications
on heterogeneous HPC platforms. The library utilizes the Kokkos
Views abstraction to automatically manage platform-dependent
allocations and access patterns of device arrays. In the Kokkos
programming model, a kernel is defined with a C++ functor that
specifies a parallel pattern and execution policy, together with the
body that contains the computational work to be carried out by
parallel units.

Kokkos is attractive from a code portability perspective due to
its higher-level abstractions, such as Kokkos Views, which make
it easier to write portable code that can be executed on differ-
ent architectures without significant modifications. Kokkos has
built-in support for various backends, including CUDA, SYCL, HIP,
and OpenMPTarget, allowing it to target other accelerators with
the same application code. Each backend provides a unique set of
features and capabilities, making it possible to select an optimal
backend for a given platform. Ideally, users only need to maintain a
single compilation base. They can pass in the appropriate switches
to the build tool (e.g., CMake) to enable any given backend to build
the program on a specific platform. Although sorting out the com-
piler details for multiple Kokkos backends is not trivial, it is more
manageable than maintaining different code versions written with
other offload acceleration languages. Within the context of this
study, the Kokkos implementation was executed across all systems,
among the CUDA (Summit, Polaris), SYCL (Sunspot), HIP (Crusher),
and OpenACC (Summit, Polaris) backends deployed.

6 GPU PERFORMANCE MODEL

To facilitate evaluation of the performance of HARVEY and the LBM
proxy application, we extend a performance model we previously
developed in [16] to predict the optimal iteration time. Since LBM
is memory-bandwidth-bound [19, 21, 22], we approximate the time
required for a processor to process fluid points, streamcollide time
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tstreameollides Py dividing the number of bytes needed to process
those fluid points by the memory bandwidth of the processor, equa-
tion 1. Unlike [16] which used individual CPU cores, for GPUs we
model the processor as either the entire GPU or sub-device (logical
GPU) of the discrete GPU, depending on the unit we measure mem-
ory bandwidth in. Then, we measure the memory bandwidth B,em
for the GPU or sub-device using the BabelSTREAM benchmark [4].
Npytes

streamcollide = B (1)
mem

When multiple processors are used to run an LBM simulation, halo
exchanges between the processors, which adds to the runtime, are
required. To account for this, we adapted the PingPong benchmark
[13] to time communication between GPUs and memory transfers
between the GPU and the CPU, considering all communication
events for all message sizes so that we can sum all communication
times and add them to the time of stream-collide as in Equation 2.

Nevents
t = tstreamcollide * tcomm; (2)
J
Predicting runtime with this model requires approximating the
number of fluid points on each processor (and by extension the
number of bytes np,;5) and halo exchanges between each of the
processors (byte size of communication event j leading to a com-
munication time tcomm;). We estimate the number of fluid points
as the size of the problem domain, with increases during scaling
as approximated by [16], and assume that each processor’s subdo-
main is a perfect cube stacked together to form a box domain with
minimal edge length. Using this same idealized cubic subdomain,
we take the communication surface area as double the maximum
area of the halo exchange boundary SAcomm, using the relation
between volume (np,.s) and the surface area given in equation 3,
as bytes are in an event sent away to another GPU and in another
event received from another GPU.

SAcomm ~ w X V% (3

For low GPU counts, the cube with the maximum communica-
tion surface area will only have some, not all, of its faces used for
communicating halo exchanges therefore we correct for this using
equation 4.

w = 2 X min(log, (ngpys), 6) (4)
To compare results independent of problem size and geometry, we

use the MFLUPS units to quantify performance, as these are pure
fluid simulations.

7 EVALUATION OF PORTING PROCESS

7.1 Porting to DPC++ with DPCT

To port the base HARVEY CUDA source code and LBM proxy app
to DPC++, we used Intel’s Data Parallel C++ Compatibility Tool
(DPCT), part of the Intel oneAPI toolkit. Prior to porting, DPCT
requires information about how source files are compiled. For sim-
ple test codes, this can be done directly through the command line
utility. However, for larger Makefile based projects like HARVEY, a
compilation database is needed. Intel provides an intercept-build
script that automatically tracks and saves the compilation com-
mands into a JSON file.

SC-W 2023, November 12-17, 2023, Denver, CO

Table 2: DPCT Warning Breakdown

Category Frequency(%)
Error handling 80.45
Unsupported feature 2.26
Functional equivalence 0.75
Kernel invocation 15.04
Performance improvement 1.50

The DPCT tool ported the proxy app without any intervention,
but some manual tuning was required for HARVEY. DPCT pro-
cessed 28 source code files, generating 133 warning messages, with
the breakdown shown in Table 2. Most of the warnings were asso-
ciated with error handling. Specifically, SYCL uses exceptions to
report errors, whereas CUDA function calls use error codes. The
warnings about unsupported features refer to CUDA API calls that
do not have equivalent in DPC++.

In some cases, the DPC++ function that replaces a CUDA call
may differ from an exact equivalent, as we encountered with a
trigonometric function. In addition, the kernel invocation warnings
inform the user that the auto-generated work group sizes may
need to be adjusted to fit within the device. Lastly, performance
improvement warnings are suggestions that may lead to faster code
and can be generic or specific.

During compilation of the initial DPC++ HARVEY port, we en-
countered compiler errors in several places throughout the code.
Many of these errors were associated with DPCT’s handling of
uninitialized dim3 objects, and were resolved by initializing the
corresponding SYCL range objects with zeros. After addressing
these issues, the DPC++ HARVEY port could successfully run on
Intel PVC on Sunspot. To get a working port on Polaris and Crusher,
some further changes were made, detailed below.

7.1.1  Polaris. In general, developing codes on moving systems
is challenging due to lack of available modules that users of pro-
duction systems have grown accustomed to. When we initially
ported SYCL HARVEY code to Polaris, an earlier version of the
open-source SYCL clang/clang++-based compiler was installed,
with no support for the oneAPI libraries our DPCT-generated code
relied on, specifically dpct and oneDPL. Our solution to this was to
build the open-source versions of those libraries (e.g., SYCLomatic)
from source and integrate them into our build chain. Now users can
avoid these steps since oneAPI is installed with support for DPCT
and oneDPL modules on Polaris.

7.1.2 Crusher. The open-source DPC++ compiler is installed on
Crusher, but DPCT-generated code still requires external libraries,
so we built those from source following the same steps outlined for
Polaris. Additionally, we encountered compilation errors related to
the use of unsupported atomic operations in experimental functions
included in the latest build of SYCLomatic that are not supported
on the MI250X at this time. As these routines were irrelevant to our
HARVEY code, we could get around this by simply commenting
out these sections of the dpct header. Beyond this, some additional
tuning of the compilation chain was required.
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7.2 Porting to HIP with HIPify

We used AMD’s HIPify tool to port the HARVEY application code to
HIP. There are two options for HIPify: HIPify-perl and HIPify-clang.
The latter is similar to DPCT in that it uses a compilation database
to transform the code with contextual information provided by the
compiler. On the other hand, the former is a simple regex script that
replaces instances of "cuda" with "hip" throughout the source code.
This is made possible by mirroring the HIP API with the CUDA API
(e.g., cudaMallocManaged versus hipMallocManaged). We chose
HIPify-perl because it is straightforward and requires only a single
command to complete the conversion. In our case, HIPify was able
to perform the conversion without any errors. Specific details in
porting HIP to different platforms are described below.

7.2.1  Crusher. Getting the HIP codes to run on Crusher was straight-
forward, requiring only the removal of a few CUDA header refer-
ences without any other necessary changes for functional code.

7.2.2  Summit. While porting the HIP proxy app to Summit was
trivial, porting HARVEY to HIP on Summit was slightly more in-
volved compared to Crusher, for two main reasons. First, we en-
countered compilation errors arising from the use of __constant__
arguments supplied to hipMemcpyToSymbol in certain areas of the
code. The workaround was to change the constants to constant
arrays of size 1. The second issue was encountered during link-
ing and was due to the supply of files with different extensions to
hipcc. We note that ROCM’s hipcc on Crusher did not have this
issue. The workaround we went with was to change the Makefile to
pass object files to hipcc produced from . cu source files having .o
endings instead of . cu_o, which we previously used to distinguish
device and host source files that have the same name. It is also
worth noting that GPU-aware MPI is not supported for HIP codes
on Summit, so the code could run only by disabling this feature
within HARVEY and the proxy app.

7.2.3  Sunspot. We employed the chipStar compiler (first discussed
in Section 5.3) to get our HIP codes running on Intel PVC. We ran
into issues with passing differing file extensions to the linker, which
was resolved using the same strategy we applied on Summit. We also

encountered compilation errors from the use of hipMemPrefetchAsync,

which is not yet a supported feature of chipStar at this time. We
commented out these lines of the code, accepting likely perfor-
mance degradation as the trade-off for obtaining functional code.
It is also worth noting that despite making it easier to get the HIP
proxy app to compile on Sunspot, the chipStar compiler generated
many warning messages pertaining to kernel arguments upon a
successful build.

7.3 Fully Manual Porting to Kokkos

In contrast to the other programming models examined in this study,
porting the code from CUDA to Kokkos must be done manually.
We ported the proxy app to Kokkos as validation before working
on HARVEY. Three significant changes were made during this
process: (1) declaring and allocating device arrays are replaced
by introducing Kokkos views, (2) data transfer between host and
device is achieved by Kokkos: : deep_copy function, and (3) kernels
are launched by Kokkos: :parallel_for with range policies that
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manage the execution space and kernel range. Namespace Kokkos
is hereafter implied.

Kokkos usually automatically selects the device memory space
if the environment is set correctly and the hardware is recognized.
However, to ensure compatibility, memory spaces and their corre-
sponding kernel range policies are defined as macros in the Kokkos
header and are switched according to the user-controlled compiling
flags. For example, the device memory space is CudaSpace with
CUDA backend, and Experimental: : SYCLDeviceUSMSpace with
the SYCL backend. The Kokkos view elements are accessed with
parentheses instead of brackets. Unlike porting the proxy app to
Kokkos, converting the HARVEY code would be tedious if such mi-
nor changes appeared frequently. An alternative way to accessing
Kokkos view elements in the device kernels through parentheses is
to pass the data pointer to the launch interface as an input parame-
ter. This pointer can be obtained by the data() function of Kokkos
views (e.g., distr.data()). With this mechanism, many existing
CUDA kernel bodies are inherited in the Kokkos functors.

In the HARVEY code, global constant device arrays, such as
lattice velocities and weights for the distributions, are declared as
constant device arrays. The declaration of these constant Kokkos
device views is straightforward. However, initializing these views in
Kokkos requires an additional step due to the inability to directly use
deep_copy when the target view has constant elements. To work
around this issue, the host view is first copied to an intermediate
non-constant device view, and then the constant view is initialized
with the non-constant view.

Although porting the proxy app was fairly straightforward, mak-
ing the large code base of HARVEY work with multiple backends
was more challenging. With the CUDA backend, global constant
global device views can be accessed in the kernels without being
passed through the launch interfaces. However, for other backends,
such as SYCL, we had to pass the global views to the kernels. To
take advantage of a single Kokkos codebase, passing global con-
stant views explicitly was applied to all kernels since it works with
multiple backends.

Ensuring the compatibility of the HARVEY Kokkos code across
multiple backends can be a challenge, as more general expressions
may not replace specific CUDA-specific keywords. For example,
the use of dim3 is prevalent in the HARVEY CUDA code, but to
ensure cross-platform functionality, we have substituted that with
a 3-element integer array in the Kokkos code. In addition, some
variables in the native CUDA HARVEY code are defined as auto
data types and receive their actual data types from initialization.
However, this may not always apply in the Kokkos code because
Kokkos is an abstraction of various backends. Hence, we have
explicitly defined the data types of arrays when enabling different
backends to share the same codebase is necessary.

HARVEY is ported to Kokkos with 452 modified code lines and
another 1876 added (Table 3.) However, the difficulty in the porting
process is not always code-wise. Setting up appropriate compiling
environments on different platforms can also be complicated, espe-
cially when employing the unreleased OpenACC backend on the
Summit or Polaris systems, which is different from other backends
in many aspects. For example, the OpenACC backend also supports
unified shared memory system as other backends such as CUDA
and SYCL do; however, the current OpenACC specification does
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Table 3: Number of Lines of Manual Code Needed for Ports

DPCT HIPify Kokkos
Number of lines added 0 0 1876
Number of lines changed 27 0 452
Time scale weeks days  months

not provide any memory allocation API or directive to explicitly
allocate host pinned memory or unified memory. Therefore, the
Kokkos OpenACC backend does not provide Kokkos memory space
variants for the unified memory as other backends do (e.g., CUDA
backend provides CudaUVMSpace). Instead, the OpenACC back-
end relies on the implicit conversion by the underlying OpenACC
compiler (e.g., NVHPC OpenACC compiler automatically maps
all dynamic data to the unified memory). However, the automatic,
implicit conversion has some limits such as not fully supporting
static data and may conflict with other parts of the program such
as I/O operations, and thus we had to manually modify some I/O
operations to avoid the conflicts, which would be unnecessary if
explicit memory allocation methods were provided.

7.4 Quantifying Porting Time

We used lines of code to measure the relative efforts required to
port HARVEY to each of SYCL, HIP, and Kokkos. Specifically, we
monitored the number of lines of the application source code that
were modified and added during the porting process, as shown in
Table 3. It is important to note that we only tracked the lines of
code related to completing the initial working port, rather than
achieving optimal performance. Although we previously described
minor code changes needed to get HIP running on NVIDIA GPUs
on Summit and on Intel PVC on Sunspot (see Sections 7.2.2 and
7.2.3, respectively), by initial working port we are referring to the
programming model of interest running on the native hardware
in this case. The justification for this choice is that the point of
tools like HIPify is to convert legacy CUDA code to the specific
language native to the other vendor’s hardware. Additionally, the
last row of Table 3 provides the order of time taken by the authors
to conduct each of the ports. As is clearly evident from Table 3,
Kokkos required the most time as it involved not only rewriting
all of the kernels, but also restructuring large portions of the code
to be compatible with Kokkos constructs. Furthermore, as detailed
in Section 7.3, ensuring portability of the Kokkos code across the
different platforms involved a separate set of code changes, which
in some cases were quite involved as with the case of the Kokkos-
OpenACC backend. It is also worth noting that the number of lines
of code does not necessarily correlate with the length of time, since
some changes required more time to resolve than others.

8 PERFORMANCE EVALUATION

Below we detail the metrics used to evaluate the relative perfor-
mance of programming models used in this work.

8.1 Quantifying Performance Efficiency

To assess the performance of each programming model, we evalu-
ate two performance efficiency metrics while scaling over a range
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of GPUs for the device architectures listed in Table 1. These met-
rics are the 1) architectural efficiency, and 2) application efficiency.
Within this study, we specify the architectural efficiency as the
fraction of achieved performance, in MFLUPS, over the best case
predicted, informed from our GPU performance model. We measure
application efficiency using the fraction of performance achieved
over the best observed performance at each GPU count among the
implementations considered for a given system. To accurately scale
and avoid problems from GPU workload saturation, we use the
well-established approach of piece-wise scaling [12]. That is, we
strong scale over a range of GPUs (equivalent to tiles on PVC or
GCDs on MI250X) spanning four powers of 2, and then grow the
problem size proportionately to the increase in GPU count. We
again emphasize the one-to-one mapping between MPI ranks and
sub-devices on the MI250X and PVC, versus single GPUs of A100
and V100 devices. This analysis is carried out in two parts: hard-
ware and software back-end comparisons. In the former, we directly
compare platforms, each represented by their native programming
model (e.g., HIP for AMD MI250X, SYCL for Intel PVC, CUDA for
NVIDIA A100 or V100). The second half of this analysis consists of
evaluating each programming model that could be run for a given
system, along with the native language. In all cases, we compare
the performance of HARVEY with the LBM proxy app, as well as
the performance predictions.

To further contextualize each programming model’s performance
to a real-world application, we conducted a similar study using a
patient-derived aorta vascular geometry, which has nontrivial load
balancing and sparser fluid points than the idealized cylinder. How-
ever, since the proxy app was not designed for this type of load
balancing, we only consider GPU performance predictions and
HARVEY performance in these cases.

9 RESULTS

9.1 Hardware Comparison

The results for the hardware comparison conducted through piece-
wise strong scaling of the native programming models on each
system are presented for the cylinder in Fig. 3 and the aorta in Fig.
4. In both data sets, we evaluate the raw MFLUPS attained by each
native programming model over the span of GPU counts, against
the predicted MFLUPS for the corresponding architecture. From
both sets of data, it was observed that the HIP implementation of
HARVEY performed worse than the other programming models
for small numbers of GPUs (< 8 GPUs), but became competitive for
multi-node runs, particular beginning at about 64 GPUs, at which
point it generally outperforms the native HARVEY implementa-
tions on Summit and Sunspot. In the aorta case (Fig. 4), the HIP
version of HARVEY running on Crusher’s MI250X begins to out-
perform the A100 on Polaris starting at 512 GPUs. With respect
to the HIP LBM proxy app, the performance is consistently bet-
ter than the other native programming models except where the
CUDA proxy app on A100 is concerned. However, the HIP proxy
app appears to edge out the CUDA proxy app on A100 near the
1024 GPU count. In contrast to what we observe, our performance
model suggests that native HIP on Crusher would perform at about
the same or slightly better than CUDA on Polaris A100 for both
geometries, over the full range of GCD counts. We also see in both
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Figure 3: Comparison of relative HARVEY and LBM Proxy-
App piecewise scaling performance using the idealized cylin-
der (with LBM Proxy-App simulation sizes of 12, 24, and 48
for GPU/GCD/Tile counts of 2-16, 16-128, and 128-1024 re-
spectively) to ideal performance model prediction using the
native backend to each system on Summit (CUDA), Crusher
(HIP), Polaris (CUDA), and Sunspot (SYCL).

cases that the native SYCL implementation of HARVEY running
on Sunspot PVC weak scales most efficiently, taken from the large
jump discontinuities at each of the weak scaling points (i.e., at 16
and 128 GPU counts). This stepping behavior was also predicted
by our performance model, and is more easily seen in the aorta
case (Fig. 4). These results are not surprising since when compared
to the NVIDIA GPUs (see Table 1), PVC tiles have more device
memory (4x than Summit), so that the occupancy is consistently
lower, especially at the end of each strong scaling section, where
we lose the latency hiding benefit. With the MI250X on Crusher
having the same device memory as PVC, it is possible that the AMD
GPU is more efficient at handling the sparser fluid domains. Other
important factors would include differences in interconnect speeds
involving sub-devices on a single chip (PVC Xe Link versus MI250X
Infinity Fabric) and between whole GPUs within a given node. In
fact, device statistics alone are not sufficient to explain observed
trends. For instance, with LBM being memory-bound, and from the
reported bandwidths in Table 1, one might expect the PVC lines to
generally be above the V100 curves. However, the trends (as well
as predictions) show it is not as clear-cut. We suspect this is at least
in part due to lower internodal interconnect latencies measured
with our pingpong benchmark on Summit compared with Sunspot
(not shown). Similarly, we measured lower internodal interconnect
latencies on Crusher than on Sunspot, which are reflected in our
performance model predictions. For native runs using the cylinder
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Figure 4: Aorta geometry hardware comparison of HARVEY
piecewise scaling relative performance (with grid spacings of
110 microns, 55 microns, and 27.5 microns for GPU/GCD/Tile
counts of 2-16, 16-128, and 128-1024 respectively) to ideal per-
formance model prediction using the native backend to each
system on Summit (CUDA), Crusher (HIP), Polaris (CUDA),
and Sunspot (SYCL).

geometry input, the LBM proxy application consistently outper-
forms HARVEY, with a speedup of approximately 2 on average. In
general, the gap between performance prediction and application
runtime is narrower for the cylinder, which is not surprising given
the simple load balancing in this case.

9.2 Software Backend Comparison

The results evaluating the software back-ends on each of the archi-
tectures are shown for the cylinder in Fig. 5 and the aorta in Fig. 6.
Here we switch to our performance efficiency measures. In each
figure, the first row of sub-plots displays the application efficiency,
and the second row contains results for the architectural efficien-
cies. The application efficiencies for each system are calculated by
normalizing the raw MFLUPS against the best observed case, which
generally corresponds to the native programming model implemen-
tation with some exceptions, notably where we have Kokkos-SYCL
being the best performing overall on Sunspot. Architectural ef-
ficiencies are calculated from normalization by the performance
predictions for the system of interest, from our GPU performance
model. Looking at the results for Summit (Fig. 5(a,e) and Fig. 6(a,e)),
we see that the performance of the HIP proxy app with CUDA
backend is on par with the native CUDA proxy app with respect
to both performance measures, with the lines nearly completely
overlapping. In contrast, HARVEY HIP generally lags behind native
HARVEY CUDA, with a notable exception at the lowest task count,
where by both performance measures and under both workloads,
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Figure 5: Piecewise scaling performance when using the cylinder input compared to the ideal performance model predictions
using all of the backends available on 4 different systems: (a,e) Summit, (b,f) Polaris, (c,g) Crusher, (d,h) Sunspot. Problem sizes,
in units of LBM Proxy-App simulation size, are 12, 24, and 48 for GPU/GCD/Tile counts of 2-16, 16-128, and 128-1024 respectively.
Application efficiencies relative to best observed performing backend. Architectural efficiencies relative to idealized predictions

from performance model.

the HIP HARVEY implementation outperforms the other HARVEY
versions, followed by a steep drop in performance on the aorta.
Among the non-native applications on Summit, it is interesting to
see Kokkos-OpenACC consistently outperform Kokkos-CUDA irre-
spective of performance measure, which is especially evident for
the proxy apps. Comparing with Summit results for the aorta, we
observe the same general behavior between Kokkos-OpenACC and
Kokkos-CUDA HARVEY implementations, but here the application
efficiencies trend upward as we scale. Once again, HIP HARVEY
tends to lag behind native CUDA, except for a notable exception
at the first data point. It is also worth pointing out that in some
instances, HARVEY in one programming model may outperform
the proxy app in a different programming model, as seen for ex-
ample with HARVEY CUDA compared with the Kokkos CUDA
proxy app on Summit. As first mentioned in Section 7.2, the HIP
code can only run on Summit with CPU-based message passing,
and we acknowledge the performance degradation that can result.
In both the cylinder and aorta datasets on Polaris (Fig. 5(b.f), and
Fig. 6(b,f)), we observe that the SYCL implementations generally
outperform the other non-native languages, and closely matches
or even exceeds native CUDA performance (at the 1024 GPU count

in Fig. 5(b)). The observed trends for the various Kokkos back-
ends differ between proxy app and HARVEY. For instance, with
respect to the LBM proxy app in the cylinder case in Fig. 5(b,f),
the Kokkos-CUDA and Kokkos-OpenACC implementations are
on par, with Kokkos-SYCL performing the worst. With HARVEY,
however, we observe parity between Kokkos-CUDA and Kokkos-
SYCL, while Kokkos-OpenACC performs the worst. The disparity
between Kokkos-OpenACC and other programming models is most
pronounced on the aorta geometry, up to 64 GPUs. One will note
a few instances where the architectural efficiency of the CUDA
proxy app on Polaris (in Fig. 5(b)) exceeds 1. This is possible due
to caching effects not accounted for in the performance model. On
Crusher (Fig. 5(c,g), and Fig. 6(c,g)), while native HIP generally
outperforms the other programming models, there are some note-
worthy differences in trends between the Kokkos-HIP and SYCL
HARVEY implementations in the cylinder and aorta cases. With the
cylinder, the Kokkos-HIP and SYCL HARVEY implementations are
generally comparable, while the Kokkos-HIP proxy app generally
performs better than the SYCL proxy app. The architectural efficien-
cies appear to be particularly low for both HARVEY and the proxy
app on Crusher as seen in Fig. 5(c,g) and 6(c,g). Of note are the
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Figure 6: HARVEY piecewise scaling performance (with grid spacings of 110 microns, 55 microns, and 27.5 microns for
GPU/GCD/Tile counts of 2-16, 16-128, and 128-1024 respectively) using the realistic workflow of the aorta dataset compared to
the ideal performance model predictions using all of the backends available on 4 different systems: (a,e) Summit, (b,f) Polaris,
(c,g) Crusher, (d,h) Sunspot. Application efficiencies relative to best observed performing backend. Architectural efficiencies

relative to idealized predictions from performance model.

differing trend lines for the application efficiencies of SYCL HAR-
VEY on Crusher for the cylinder versus the aorta cases (Fig. 5(c)
and 6(c)). In the latter, the relative performance drops precipitously
after the first data point, diverging from Kokkos-SYCL as the GPU
count increases. Despite the downward trend on the aorta, even the
lowest point has a higher efficiency value than the highest point on
the cylinder, which in contrast appears to flat line in comparison.
It is worth reminding the reader that the SYCL backend is still in
an early development stage on the Crusher testbed. When looking
at the Sunspot plots (Fig. 5(d,h), and Fig. 6(d,h)), one will notice
that lines terminate at 256 GPUs, and this was due to the limited
availability of hardware resources on the testbed system. One of
the most striking features of these plots is that the Kokkos-SYCL
implementations outperform the corresponding native SYCL codes
nearly across the board. Generally, we observe HIP and SYCL HAR-
VEY as being comparable, with the largest disparities observed with
respect to the application efficiencies of the aorta (Fig. 6(d)). Inter-
estingly, we can see from the cylinder data on Sunspot (Fig. 5(d,h))
that the HIP proxy app performs the worst among all programming
models considered for the platform. Typically, proxy applications
are expected to outperform their corresponding HARVEY appli-
cations since they represent an idealized version of HARVEY’s
core functionality. However, as mentioned in section 7.2.3, there
were warning messages during the development of the chipStar
miniapp, which likely impacted its performance. It’s important to
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note that chipStar is currently in a heavy development phase, with
functionality taking precedence over performance considerations.

9.3 Runtime Compositions

In evaluating hardware features for real applications, the composi-
tion of the runtime must be considered so that optimal hardware
features can be chosen for a given application. HARVEY runtime
composition on each vendor’s hardware for an aorta geometry is
shown in Figure 7. As expected, communication time increases
with the number of GPUs used and as more internodal communi-
cation is required. When comparing the runtime compositions for
each system (Fig. 7) against their hardware characteristics (Table
1), the increasing proportion of communication time from Crusher
(MI250X GCDs) to Sunspot (PVC Tiles) to Polaris (A100 GPUs) is ex-
pected as the number of GPUs per node is the least on Polaris (four
GPUs), causing high amounts of slow internodal communication on
Polaris specifically, and the high-speed internodal interconnect on
Crusher, having four times higher bandwidth, greatly diminishes
the cost of internodal communication on Crusher.

10 LESSONS LEARNED

The insights gleaned from this study highlight several points of
interest for researchers looking to move legacy codes from CUDA
implementations to other programming models. Initially, we ob-
served a significant trade-off between the level of effort required
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Figure 7: Composition of runtimes for the GPU with the greatest runtime running HARVEY Aorta piecewise strong scaling for
each system: (a) Polaris - Nvidia A100 GPUs, (b) Crusher - AMD MI250X GCDs, (c) Sunspot - Intel PVC Tiles

for porting and the resulting portability achieved. The HIP and
SYCL codes required relatively less effort than Kokkos with the use
of automated porting assist tools, HIPify and DPCT, respectively.
Between HIPify and DPCT, the former was more straightforward
due to the similarity between the HIP and CUDA API (i.e., cudaMal-
locManaged versus hipMallocManaged), only requiring a regex
script to perform the conversion. These tools reduced the barrier
to obtaining ports that could each run on a subset of the platforms.
On the other hand, each CUDA kernel had to be manually rewrit-
ten in Kokkos, with the resulting implementation being capable
of being run on all of the systems. Therefore, the Kokkos imple-
mentation had the greatest portability, but not necessarily the best
performance. This was most clearly demonstrated when comparing
the application and architectural efficiencies between SYCL and
Kokkos variants on NVIDIA based Polaris (Fig.5(b.f) and Fig.6(b.f)),
with SYCL getting superior performance by both measures over
the full range of GPU counts, under both types of workloads. A
similar trend is observed between the SYCL and Kokkos implemen-
tations of the LBM proxy application. It follows from these findings
that greater portability does not necessarily translate into greater
portability of performance.

When considering how to navigate the exascale landscape, users
of legacy HPC codes are faced with choosing between maintaining
separate implementations for each programming model or opting
for a one-size-fits-all approach with a portability framework such
as Kokkos. Our results from Fig.5 and Fig.6 showed that the native
programming model generally corresponded to the best observed
performance for a given workload on a given system. It would be
expected that the compilers for the native languages would be most
optimized for the vendor’s hardware. However, this trend did not
hold for Sunspot, where we observed slightly better performance of
Kokkos, mainly in the case of the HARVEY application runs. This is
not completely surprising, given that the Kokkos implementation
was manually tuned for Sunspot hardware. Nonetheless, the two
implementations remained comparable. From these observations,
one could argue that there remains a need to maintain multiple
native implementations to maximize each system’s compute capa-
bilities. There are two counterpoints to this. First, again referring to

Fig.5 and Fig.6, the native performance was not substantially higher
than the other programming models for the system of interest. This
is clear from the case of Kokkos, wherein we see performance com-
parable to that of the native language on all systems. Second, code
maintainability becomes challenging when maintaining several
GPU-supported implementations. There are two approaches to the
maintainability issue. When a new feature is added, it can be ei-
ther done directly in the original GPU implementation and then
re-ported to each of the other programming models, or alternatively
the user can manually translate the new feature into each imple-
mentation. Both options are error-prone. We elected to go with the
latter strategy of implementing the new feature by hand in each
programming model, to avoid potentially reintroducing any bugs
from use of the port assist tools. This approach can be inefficient
for large additional features or if new features are added frequently.
In some cases, implementing a feature by hand using one program-
ming model may require more code restructuring compared with
another model, which generally occurs when there is not a direct
correspondence between a CUDA construct and an equivalent in
Kokkos or SYCL (this was generally not an issue with HIP). This
was our experience with manually porting the CPU-based bound-
ary conditions in HARVEY onto the GPU, which occurred after
the initial porting process. Finally, maintaining multiple code bases
can be challenging because obtaining expected performance on
a given system may require specialized knowledge of the partic-
ular programming model API, while it is arguably favorable to
acquire expert level knowledge of a single offload programming
model. For these reasons, we appreciate the benefits of having a
single-programming model implementation, such as Kokkos.

In this work, the process of porting and optimizing the main
HARVEY application was enhanced by the use of proxy applica-
tions. In Figs. 3 and 5, we demonstrated that the proxy application
can be used to inform the expected performance limits of each
implementation of the main application programming model, on all
systems of interest. Furthermore, the proxy application provided a
useful testbed for experimenting with automated porting tools on
a smaller codebase before moving to the main application, which
enabled us to get working codes quickly on different hardware.
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While both our performance model and the proxy application were
useful in gauging expected performance, the LBM proxy applica-
tion was unique in being able to identify areas of optimization due
to its correspondence with HARVEY. That is, because both codes
are essentially carrying out the same underlying algorithm at their
core, it enables the user to identify bottlenecks in the main produc-
tion code and draw from implementation differences in the proxy
app to drive optimizations in the main application. However, it is
worth cautioning that this approach can be limited by the fact that
a proxy application may sometimes oversimplify certain aspects of
the code for the sake of performance, but that there may not be a
direct translation in the main application. A primary example of
this lies in the domain decomposition schemes. HARVEY uses a
sophisticated load bisection balancer algorithm designed to handle
complex geometries, whereas the LBM proxy app uses a simplistic
domain decomposition scheme that gives perfect load balancing
in the cylindrical geometry it was programmed to solve. In sum-
mary, while proxy applications can be invaluable in optimization
workflows, their limitations need also be considered.

11 CONCLUSION

Our study systematically evaluated SYCL, HIP, and Kokkos pro-
gramming models for porting a CUDA-based code to various GPU-
accelerated supercomputing platforms. We found that all models
performed well in terms of the baseline code by applying manual
optimizations to each port and benchmarking their performance
with a GPU performance model and an LBM proxy app. However,
we observed significant variation in the time required for each
model to achieve a functional port, with HIP being the quickest and
Kokkos requiring the most time. When tested with a real-world
workload, the aorta, we found that Sunspot Nodes (Intel PVC) and
Crusher Nodes (AMD MI250X) achieved better or comparable per-
formance to Polaris and Summit Nodes (NVIDIA GPUs) for piece-
wise strong scaling. This study provides insights into the intricacies
of transitioning CUDA-centric code to diverse programming mod-
els and hardware setups. Illustrated by the exemplary instance of
HARVEY, these findings have the potential to guide the choices of
HPC practitioners seeking to enhance their code for a variety of
supercomputing platforms featuring GPU acceleration.
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