
Studying Performance Portability of LAMMPS
across Diverse GPU-based Platforms

Nick Hagerty
Oak Ridge National Laboratory

Oak Ridge, TN, USA
hagertynl@ornl.gov

Verónica G. Melesse Vergara
Oak Ridge National Laboratory

Oak Ridge, TN, USA
vergaravg@ornl.gov

Arnold Tharrington
Oak Ridge National Laboratory

Oak Ridge, TN, USA
arnoldt@ornl.gov

Abstract—The molecular dynamics simulation software,
LAMMPS, utilizes the Kokkos acceleration library to port
computation to a diverse set of architectures including those
based on GPU accelerators. In addition to Kokkos, LAMMPS
contains a vast code base that leverages the CUDA application
programming interface using library functions such as cuFFT,
CUDA’s fast-fourier transform (FFT) library, and, more recently,
also support for AMD’s Heterogeneous Interface for Portability
(HIP) that is rapidly growing. While preparing LAMMPS tests
for the AMD GPU-based test system precursors to Frontier,
we investigated several strategies for accelerating LAMMPS on
AMD GPUs, using the AMD Instinct MI100 and MI250X. In
this work, we integrated the HIP FFT library, hipFFT, into the
particle-particle particle-mesh (PPPM) long-range solver, which
allowed the porting of PPPM calculations to the GPUs. Kokkos
behavior on the MI100 and MI250X was also investigated through
the package kokkos command of LAMMPS, targeting com-
munication, memory usage, and particle grid decomposition. The
Tersoff, Reax, Lennard-Jones (LJ), EAM, Granular, and PPPM
potentials were investigated in this effort, and results from these
experiments are provided. The selected potentials were run on
Spock (AMD Instinct MI100), Crusher (AMD Instinct MI250X),
AFW HPC11 (NVIDIA A100) and Summit (NVIDIA V100), for
comparison. Operational roofline models were constructed and
analyzed for the Tersoff, Reax, and Lennard-Jones potentials on
Crusher and Summit.

Index Terms—molecular dynamics, performance portability,
GPU accelerated computing, roofline model

I. INTRODUCTION

In recent years, the diversity of GPU-accelerated architec-
tures has broaden considerably with vendors such as Advanced
Micro Devices (AMD) and Intel joining NVIDIA to compete
in this space and now providing devices designed with high
performance computing (HPC) and artificial intelligence (AI)
workloads in mind.

In 2019, the United States Department of Energy (DOE) an-
nounced Oak Ridge National Laboratory’s Frontier supercom-
puter, expected to be the first Exascale system in the nation [1].
The Frontier system is an AMD GPU-based HPE/Cray EX

Notice: This manuscript has been authored in part by UT-Battelle, LLC,
under contract DE-AC05-00OR22725 with the US Department of Energy
(DOE). The US government retains and the publisher, by accepting the
article for publication, acknowledges that the US government retains a
nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce
the published form of this manuscript, or allow others to do so, for US
government purposes. DOE will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

supercomputer and, as a result, several new technologies
have been developed to support scientific workloads on AMD
GPU architectures. The ecosystem supporting AMD GPUs has
opened new alternatives for application developers interested
in running their application across platforms. AMD’s Radeon
Open Compute platform (ROCm) provides application pro-
gramming interfaces including the Heterogenous Interface for
Portability (HIP), libraries, and debugger and profiling tools.
This ecosystem allows application developers to execute and
optimize workloads on AMD GPUs.

In this work, we utilize LAMMPS, a popular open source
molecular dynamics application, as a case study to understand
its performance on different GPU-based platforms.

LAMMPS utilizes the Kokkos library to port calculations
to a diverse set of architectures including those based on GPU
accelerators. In addition to Kokkos, LAMMPS contains a vast
code base that leverages the CUDA application programming
interface using library functions such as cuFFT, and, more
recently, also support for AMD’s Heterogeneous Interface for
Portability (HIP) that is rapidly growing.

While preparing LAMMPS tests for Spock and Crusher,
the AMD GPU-based test systems precursors to Frontier, we
investigated several strategies for accelerating LAMMPS on
their two distinct AMD GPU architectures. Spock is a 36-node
HPE Cray EX supercomputer powered by the AMD EPYC
7702 64-core processor with 4 AMD Instinct MI100 GPUs
per node [2]. Crusher is a 192-node Test and Development
System (TDS) powered by the AMD EPYC 7A53 64-core
processor with 4 AMD Instinct MI250X GPUs per node [5].
The same tests were also executed on production Oak Ridge
National Laboratory supercomputers based on NVIDIA GPUs
including Summit, the United State’s fastest supercomputer as
of the November 2021 TOP500 list [3] comprised of 4,680
nodes with two IBM POWER9 22-core processors and six
NVIDIA V100 GPUs, and the Air Force Weather HPC11
system [4] which is comprised of two clusters each with 800
nodes powered by the AMD EPYC 7742 64-core processor
and a GPU-partition with 20 nodes that, in addition, include
4 NVIDIA A100 GPUs per node.

The tests executed include liquid, metal, granular, biolog-
ical, and polymer systems up to 55 million atoms in size,
evaluating the Reax, Lennard-Jones, EAM, Granular, Tersoff,
and particle-particle particle-mesh (PPPM) potentials. The



selected LAMMPS potentials were run on Spock, Crusher,
AFW HPC11, and Summit, in order to collect sufficient data
to better understand the performance of the application in a
diverse set of architectures.

As part of this work, we implemented hipFFT, which is
AMD’s HIP fast fourier transform (FFT) library into the
PPPM long-range solver, which allowed us to port the PPPM
calculations to AMD GPU architectures. Prior to hipFFT
integration, the PPPM calculations were constrained to running
on the host using the LAMMPS default (KISS FFT) or FFTW,
and the simulation was forced to send data between the CPU
and GPU at every timestep.

Kokkos behaviors in each potential were then evaluated
using combinations of values of the LAMMPS package
kokkos flags neigh, neigh/thread, pair/only,
comm, newton, and pair/qeq (Reax only). Targeted
Kokkos behaviors include memory and thread utilization,
communication procedures, and neighbor list construction.
LAMMPS provides several options for the user to take advan-
tage of memory characteristics such as cache levels, memory
clock frequency, memory bandwidth, and threading behavior
through the Kokkos library. These options enable the user to
customize simulation behavior for GPU architectures.

The AMD profiler, rocprof, and NVIDIA NSight Com-
pute profiler, ncu, were used to conduct performance anal-
ysis on Crusher and Summit. Performance metrics targeting
memory accesses and floating-point operations were gathered,
and the results were used to evaluate experiments and inform
further areas of optimization. These results are aggregated
into operational roofline models [11], which present achieved
floating-point performance.

This work presents an overview of performance portability
of the LAMMPS molecular dynamics code across NVIDIA
and AMD GPU-based architectures. The findings observed
for the different potentials, as well as the methodology and
optimizations explored for each architecture will be useful for
LAMMPS users as well as the HPE/Cray EX supercomputer
community interested in porting applications across NVIDIA
and AMD GPU-accelerated platforms.

II. RELATED WORK

Roofline models are an increasingly popular method of
visualizing performance capability on a multicore CPU or
on a GPU. As such, there are many variations of rooflines.
For this work, we selected the operational roofline and focus
on the double-precision floating point operations (FLOPS)
performed. The operational roofline is first described in 2009
by Williams et al. [11]. The peak roofline is constructed by
Equation 1, where MemBW is the bandwidth of the off-chip
memory (DRAM or HBM) and OpIntens, operational inten-
sity, is the ratio of double-precision floating point operations
to bytes moved.

FLOPS/sattainable = MIN

{
FLOPS/speak

MemBW ×OperIntens
(1)

Fig. 1. Theoretical operational roofline

Then, for each kernel of interest, we calculate the achieved
FLOPS/s and operational intensity, and compare it to the
theoretical operational roofline. Figure 1 shows an annotated
theoretical operational roofline. To the left of the vertical
black line, the bandwidth of the GPU high-bandwidth memory
(HBM) is the limiting factor on performance, and the kernel
is termed “memory-bound”. To the right, a kernel is labeled
“compute-bound”.

Hierarchical roofline models include the theoretical
rooflines for various levels of memory in the memory-bound
region, including caches [12]. We do not use hierarchical
roofline models in this study, as profiling cache performance
is an evolving capability on AMD GPU architectures.

To extract performance counters from AMD GPU architec-
tures, we follow a process similar to Leinhauser et al. [10]
which uses the SQ_INSTS_VALU and SQ_INSTS_SALU
instruction counters, and FETCH_SIZE and WRITE_SIZE
for memory analysis. Since that publication, rocprof now
provides a more detailed instruction breakdown through
SQ_INSTS_VALU_{ADD,MUL,FMA}_FP{16,32,64},
which we use in this work, in place of SQ_INSTS_VALU
and SQ_INSTS_SALU. The metrics required to calculate
FETCH_SIZE and WRITE_SIZE are directly available in
rocprof, so we query those, and calculate the fetch and
write sizes while post-processing. Our roofline model is
different from that of [10], as they employ an instruction
roofline model, first developed by Ding et al. [9], which
evaluates performance by the instructions issued, not by
the operations performed. Evaluating by instructions issued
targets identifying fetch-decode-issue bottlenecks, and seeks
to evaluate performance when there are a large number of
integer instructions [9].

III. EXPERIMENTAL SETUP

This study utilized four Oak Ridge National Laboratory
(ORNL) supercomputers; Summit, AFW HPC11, Spock, and
Crusher. Table I summarizes the GPU architectures for each
of these machines.

A. Summit

Summit is an IBM POWER9 supercomputer with more than
4,600 compute nodes, currently ranked the number two fastest



TABLE I
SUMMARY OF GPU ARCHITECTURES USED

Machine GPU Model Memory Size
Summit NVIDIA V100 16 GB

AFW HPC11 NVIDIA A100 40 GB
Spock AMD Instinct MI100 32 GB

Crusher AMD Instinct MI250X 64 GB (1-GCD)

Fig. 2. Summit node architecture

supercomputer in the world on the most recent TOP500 list
(Nov 2021) [3]. Each compute node has two 22-core POWER9
CPUs and six NVIDIA Tesla V100 GPUs. The GPUs on each
compute node are interconnected via NVLink 2.0, with 50
GB/s peak bandwidth between devices. Each POWER9 CPU is
connected via NVLink 2.0 to three of the six GPUs. Summit’s
node architecture is shown in Figure 2 [8].

The NVHPC v21.11 toolkit was used to compile and profile
LAMMPS on Summit for this study.

B. HPC11

The Air Force Weather (AFW) HPC11 system consists
of two independent clusters, Fawbush and Miller, each with
800 nodes comprised of a single AMD EPYC 7713 64-core
processor. In addition, there is a GPU-based partition which
consists of 20 nodes, powered by one AMD EPYC 7713 64-
core processor and four 40 GB NVIDIA A100 GPUs. The
GPUs on each compute node are interconnected in all-to-all
arrangement via NVLink2.0, providing device-to-device bi-
directional bandwidths of 25 GB/s. The AMD EPYC processor
is connected to GPUs via PCIe v4, with a bi-directional
bandwidth of 32 GB/s. HPC11’s GPU-partition compute node
architecture is shown in Figure 3.

The NVHPC v21.3 toolkit was used to compile LAMMPS
on HPC11.

C. Spock

Spock is a 36-node HPE/Cray EX early access precursor to
Frontier. Spock is powered by one AMD EPYC 7702 64-core
processor with four 32GB AMD Instinct MI100 GPUs per

Fig. 3. AFW HPC11 GPU node architecture

Fig. 4. Spock node architecture

node [2]. Each MI100 consists of 120 compute units (analo-
gous to an NVIDIA streaming multiprocessor) and 7680 total
cores. The GPUs on each compute node are interconnected
in all-to-all arrangement via Infinity Fabric, providing device-
to-device bi-directional bandwidths of 92 GB/s. The AMD
EPYC processor is connected via PCIe Gen4 to all GPUs,
providing bi-directional bandwidths of 64 GB/s. Spock’s node
architecture is shown in Figure 4.

The HIP C++ compiler wrapper, hipcc, provided by
ROCm v4.5.0, was used to compile LAMMPS on Spock.

D. Crusher

Crusher is a 192-node Test and Development System (TDS)
precursor to Frontier, powered by one AMD EPYC 7A53 64-
core processor and four AMD Instinct MI250X GPUs per
node. Each MI250X GPU contains two graphics compute dies
(GCDs), and is seen as two distinct GPUs by applications
and schedulers. Each GCD contains 64 GB high-bandwidth
memory (HBM), accessed at 1.6 TB/s. GCDs within an
MI250X GPUs are connected via Infinity Fabric, with a peak
bandwidth of 200 GB/s. GCDs on different MI250X GPUs are
connected via Infinity Fabric GPU-GPU, as shown in Figure
5, with peak bandwidth of up to 100 GB/s, based on the
number of Infinity Fabric connections between GCDs [5].

The HIP C++ compiler wrapper, hipcc, provided by
ROCm v4.5.0, was used to compile LAMMPS on Crusher.

IV. EXPERIMENTAL RESULTS

Following changes to port the LAMMPS PPPM solver
to AMD GPUs, we tested and analyzed several common



Fig. 5. Crusher node architecture

TABLE II
SUMMARY OF POTENTIALS EVALUATED

Potential # atoms (base) Avg # neighs/atom
TIP3P water 45K 1405

CLASS2+PPPM polymer 42K 564
ReaxFF 30K 667
Tersoff* 32K 16.6
Rhodo* 32K 447

LJ liquid* 32K 76.9
EAM metal* 32K 75.5

Chute granular flow* 32K 376

LAMMPS potentials using one CPU core and one GPU (one
GCD for AMD Instinct MI250X).

We constructed a diverse set of models, comprised of several
LAMMPS-provided benchmarks and some common models.
The systems are summarized in Table II. An asterisk indicates
LAMMPS-provided benchmarks.

These potentials assess a wide range of the average neigh-
bors per atom. Our tests replicated each system in 3 dimen-
sions (2 dimensions for Chute) by 1 (base), 2, 4, 6, 8, and
12, or until each system exceeded device memory. All tests
were averaged over 5 runs. Results are presented in units of
million-atom * steps / second.

A. Porting PPPM Solver to AMD GPU architectures

The particle-particle particle-mesh (PPPM) solver maps
atom charges to a 3D mesh, then uses 3D fast fourier trans-
forms (FFTs) to solve Poisson’s equations on the 3D mesh
[6]. LAMMPS uses the built-in KISS FFT by default, but
vendor-provided FFT libraries like cuFFT and FFTW can
replace KISS FFT. LAMMPS stable releases do not support
hipFFT in PPPM as of April 2022, so PPPM is constrained
to running on the CPU on AMD GPU architectures. We im-
plemented hipFFT into the KOKKOS package PPPM source.
The performance improvement from hipFFT was evaluated
using a TIP3P water model, the LAMMPS Rhodo benchmark,
and a Class2 Lennard-Jones polymer model. The speedup
for these potentials as a function of model size is shown in
Figure 6. Each color represents how many times the system
was replicated in the x, y, and z directions. Base (1x) system
sizes are between 32K and 45K atoms.

The increase in speedup from 1x to 2x system sizes is
discussed in depth in subsequent sections, and is attributed to
under-utilization of the GPU threads, and the increased signifi-

Fig. 6. Performance improvement of hipFFT-accelerated PPPM

TABLE III
SUMMARY OF KOKKOS FLAGS EXAMINED

Flag name Values Description
neigh half,full Full or half neighbor list

neigh/qeq half,full Size of neighbor list for fix/qeq
neigh/thread on,off Thread over atoms and neighbors

newton on,off Set Newton pairwise, bonded flags
comm no,device,host Location of packing/unpacking of data

pair/only on,off Use device only for pair styles

cance of overhead incurred from communication, proportional
to elapsed time.

Prior to the addition of hipFFT, FFT computations had to be
performed on the CPU, which required communication from
the GPU to CPU at every timestep.

B. Kokkos Package Parameter Study

LAMMPS provides several options to customize the work-
load sent through Kokkos through the package command
[7]. Table III lists the Kokkos flags examined in this study.

There are several constraints on combinations of flags.
The neigh/qeq flag is only used for Reax tests. The
neigh/thread on flag can only be used with neigh
full. The Chute, Rhodo, Reax, and Tersoff benchmarks
all require neigh half, so neigh/thread on is not
possible for these benchmarks. Reax and Tersoff also require
newton on. Each valid combination of flags was tested on a
simulation of at least 100 steps, and the timesteps/s were
gathered. To compare performance for a specific parameter
combination, we computed million-atom * steps /
s for each model size. This value is a good indication of
the simulation-based throughput attainable by the GPU. For
each potential, we selected one system size to discuss results
for, summarized in Table IV. We analyzed the performance of
each Kokkos parameter, and summarize our findings below.

1) Kokkos parameter: neigh and neigh/thread: The neigh
keyword specifies how neighbor lists are built, and the
neigh/thread keyword determines if the Kokkos package
threads over only atoms, or over atoms and their neighbors.
neigh half utilizes a thread-safe implementation of half-
neighbor lists, while full utilizes full neigbor lists. To use
neigh/thread on, we must use full neighbor lists. The



TABLE IV
SUMMARY OF SYSTEM SIZES PRESENTED

Potential System Size Reported
LJ 6.91 mil atoms

Tersoff 2.05 mil atoms
Chute 4.6 mil atoms
Rhodo 2.05 mil atoms
EAM 2.05 mil atoms

Class2+PPPM 340K atoms
TIP3P 360K atoms

ReaxFF 238K atoms

Fig. 7. Performance improvement of using neigh half

Chute, Rhodo, Reax, and Tersoff potentials all require neigh
half, so those potentials are excluded from these results.
neigh full is the default when running on the GPU, and
neigh/thread on is default only when less than 16K
atoms per MPI rank are used, which is a condition not met
by any system in this study. The average neighbors per atom
for each potential can be found in Table II.

Figure 7 shows the performance improvement from using
neigh half relative to neigh full with threading
off for each potential, with the additional Kokkos flags
pair/only off neigh/thread off newton off
comm device.

Figure 8 shows the performance improvement for neigh
full neigh/thread on, relative to threading off, with
the additional Kokkos flags pair/only off newton
off comm device.

Fig. 8. Performance improvement of using neigh/thread on

Fig. 9. Performance improvement of using comm device

The potentials in Figure 7 and Figure 8 are ordered from
left to right by increasing average neighbors per atom. For
Spock and Crusher, we can see that the speedup steadily
increases as we move from left to right (increasing average
neighbors per atom), while Summit and HPC11 do not exhibit
this same behavior. This is especially visible in Figure 8,
where Spock and Crusher achieve a 1.2x speedup when
using neigh/thread on, while Summit and AFW observe
a 20% slowdown. Summit and AFW did not benefit from
neigh/thread on for any of the sampled potentials.

2) Kokkos parameter: comm: The comm keyword controls
whether the host or device performs unpacking and packing
when communicating per-atom data between processors. The
comm keyword controls the value of all comm sub-keywords,
such as comm/forward, which are detailed in the LAMMPS
package command manual page [7]. We did not investi-
gate every comm sub-keyword, but rather set all comm sub-
keywords to the value of comm, which is the default behavior.
The comm keyword can hold values of no (use standard
single-thread non-Kokkos methods), device (use the device),
or host (use the host, multi-threaded). On GPUs, the default
is comm device. Figure 9 shows the performance improve-
ment of comm device, compared to comm no, using the
additional Kokkos flags listed in Table V. comm device was
shown to be optimal in nearly all experiments, except for the
smallest system size of Reax, where comm no achieves a 4%
speedup over comm device on Summit.

3) Kokkos parameter: neigh/qeq: The neigh/qeq key-
word determines how neighbor lists are built for fix
qeq/reaxff/kk fixes, which are used in the Reax po-
tential in this study. Reax requires neigh half, but
neigh/qeq can be full or half. For all machines and
system sizes, neigh/qeq full was found to be the op-
timal setting. Figure 10 shows the speedup from using
neigh/qeq full, relative to neigh/qeq half, with the
additional Kokkos flags neigh half pair/only off
neigh/thread off newton on comm device. The
2-million atom system exceeds device memory on Spock,
Summit, and AFW.



TABLE V
KOKKOS FLAGS USED TO EVALUATE COMM DEVICE

Potential Kokkos flags
LJ neigh full neigh/thread off newton off pair/only off

Tersoff neigh half neigh/thread off newton on pair/only off
Chute neigh half neigh/thread off newton off pair/only off
Rhodo neigh half neigh/thread off newton off pair/only off
EAM neigh half neigh/thread off newton off pair/only off

Class2+PPPM (Crusher, Spock) neigh full neigh/thread on newton off pair/only off
Class2+PPPM (Summit, AFW) neigh half neigh/thread off newton off pair/only off

TIP3P (Crusher, Spock) neigh full neigh/thread on newton off pair/only off
TIP3P (Summit, AFW) neigh half neigh/thread off newton off pair/only off

ReaxFF neigh half neigh/qeq full newton on pair/only off

Fig. 10. Performance improvement of using neigh/qeq full

TABLE VI
KOKKOS FLAGS FOR ROOFLINE ANALYSIS

Potential Kokkos flags
LJ neigh full neigh/thread off newton off pair/only off

Tersoff neigh half neigh/thread off newton on pair/only off
ReaxFF neigh half neigh/qeq full newton on pair/only off

C. Roofline Performance Analysis

After analyzing LAMMPS package kokkos parameters,
we performed roofline analysis on 3 potentials - Lennard-
Jones, Tersoff, and Reax [9], [11]. We limited our analysis to
double-precision floating-point operations and high-bandwidth
memory (HBM) accesses.

Table VI provides the package kokkos flags used in
the LAMMPS launch command for roofline experiments of
Crusher and Summit.

1) Computing kernel performance on AMD GPUs: We
used ROCm v4.5.0 on Crusher to compile and profile
LAMMPS. AMD’s profiler, rocprof, provides instruction
counters for double-precision floating point instructions in a
per-simd context. To translate these instruction counters
to floating point operations and normalize to a global con-
text on an AMD Instinct MI250X, we use Equation 2. For
roofline models that use issued instructions as a measure of
performance instead of performed operations, the per-simd
instructions are only multiplied by the number of SIMD units,
4 on the MI250X.

FLOPSglobal = Instrper−simd×4 SIMD×16
cores

SIMD
(2)

To profile double-precision floating point operations, we
query the SQ_INSTS_VALU_{ADD,MUL,FMA}_F64 met-
rics. We sum these metrics, weighting the FMA instruction by
2, to find the total double-precision floating point instructions
issued. Then we use Equation 2 to calculate the number of
operations performed.

To gather HBM usage, we use the
TCC_EA_{RDREQ,WREQ} metrics, which count the number
of memory transactions performed between the L2 cache
and HBM. Memory transactions are either 32 bytes or 64
bytes. The RDREQ offers two suffixes, _32B and _sum, and
WREQ offers _64B and _sum. The metrics with the suffix of
_32B are 32-byte transactions and the suffix of _64B are
64-byte transactions. The number of 32-byte write requests
can be calculated by subtracting the number of 64-byte write
requests from the sum of all write requests. The number of
64-byte read requests can be calculated in a similar manner.
Equation 3 calculates the number of bytes read from HBM,
and Equation 4 calculates the number of bytes written to
HBM. The sum of these two equations yields the total bytes
moved.

BytesRead = 32×TCC EA RDREQ 32B

+64×(TCC EA RDREQ sum

− TCC EA RDREQ 32B)

(3)

BytesWrite = 64×TCC EA WREQ 64B

+32×(TCC EA WREQ sum

− TCC EA WREQ 64B)

(4)

Using these metrics, we can locate a kernel’s achieved
performance relative to the theoretical roofline. The x-axis
of the roofline model is operational intensity, which we
calculate for each kernel by Equation 5. The y-axis of the
roofline is performance, which we calculate for each kernel
by Equation 6.

OI(FLOPS/Byte) =
FLOPS

BytesWrite+BytesRead
(5)



Performance(FLOPS/s) =
FLOPS

elapsed seconds
(6)

2) Computing kernel performance on NVIDIA GPUs:
We used NSight Compute v2021.3.0.0 on Summit to gather
metrics for roofline analysis. NSight Compute provides the
ncu profiler, and by using the flags --set full -k
kernel_name, NSight Compute gathers the metrics re-
quired for roofline profiling for the kernels with the spec-
ified name. We loaded the generated ncu-rep file into
NSight Compute GUI, which constructed the floating point
operational roofline model for each kernel. NSight Compute
also provides a -k kernel_name flag, which allows the
user to specify the name of the kernel to profile. Unfor-
tunately, NSight Compute sees all Kokkos-launched kernels
as cuda parallel launch {local,constant} memory, and thus
cannot be filtered by a string such as PairTersoff to
only profile Tersoff pair style kernels. The “mangled” kernel
name, which is provided in NSight Compute GUI, is more
than 100 characters long and cannot be filtered on using the
-k option. Due to this limitation, all Kokkos kernels were
profiled, which greatly increased the walltime of the profiling
experiments. The desired kernels were then hand-selected from
NSight Compute GUI. The overhead for the Reax potential
increased beyond the walltime limits available on the Summit
batch queue, so Reax is excluded from roofline profiling on
Summit.

We calculated the operational intensity and performance
using the metrics provided to confirm that the roofline pro-
vided by NSight Compute GUI is computed the same way as
we computed for AMD. NSight Compute GUI provides in-
struction counters for DADD, DMUL, and DFMA. We sum these
metrics together, weighting DFMA by 2, as we did for Crusher,
and multiply by the warp size, 32, to calculate the number
of double-precision floating point operations performed, and
calculate achieved performance using Equation 6.

NSight Compute GUI also builds memory tables, which
show how many bytes of data are moved between caches
and HBM. NSight Compute directly provides the information
needed for our roofline through dram__bytes_read.sum
and dram__bytes_write.sum. As with AMD, we use
Equation 5 to calculate the operational intensity.

3) Roofline results: We profiled several sizes of the
Lennard-Jones, Tersoff, and Reax benchmarks on Crusher and
Summit for roofline analysis. Figure 11 shows the operational
roofline for these potentials on Crusher.

Reax has the highest operational intensity of the three
sampled potentials, followed by Tersoff, then Lennard-Jones.
As system sizes increase, the operational intensity decreases,
but the achieved performance of the kernel may increase
before eventually decreasing. This moves the data point closer
to the memory-bound region of the theoretical roofline. Ter-
soff and Lennard-Jones distinctly display this behavior, most
visibly from the smallest system size to the second-smallest.
Supplementing this observation, we also noticed an increase

Fig. 11. Roofline plot of Crusher

in the million-atom steps / s when systems were
initially enlarged from their base size, followed by a decrease,
as systems became too large to efficiently balance on a single
GPU.

It is worth noting that the Tersoff benchmark requires the
use of half neighbor lists, which utilize atomics to maintain
thread-safe behavior. The Reax benchmark uses 2 neighbor
lists, one is a half neighbor list for the reax/c/kk pair style,
and the other is a full neighbor list for fix qeq/reax/kk.

The Reax potential resides in the compute-bound region of
the roofline, and the Tersoff potential starts in the compute-
bound region at the smallest system size, before transitioning
to the memory-bound region for larger systems. The Lennard-
Jones potential is also found in the memory-bound region, and
has the lowest operational intensity of the three potentials.
The Reax 256K-atom system achieves about 20% of peak
floating point performance on a single GCD on Crusher with
5.6 TFLOPS/s.

It is worth noting that these are preliminary results on
the Crusher test and development system for Reax, Tersoff,
and Lennard-Jones potentials. It is evident in the roofline
model that further work is needed to continue improving the
performance of these particular kernels and fully optimize
them for the system. In addition, it is important to keep in
mind that Crusher’s software stack is rapidly evolving and
as it matures, new features and improvements are contin-
uously added. Similarly, LAMMPS is actively working on
optimizations for AMD GPU architectures and although the
modifications thus far already show improvement, we expect
further improvements as the system and the software stack
matures. Figure 12 shows the performance improvement on
small, medium, and large systems using the Lennard-Jones,
Tersoff, and Reax potentials, comparing the September 2021
release of LAMMPS to the development branch, February
2022.

Figure 13 shows the operation roofline for the selected
potentials on Summit (Note: Reax is not present in this
roofline). The overhead from profiling all kernels greatly
increased the runtime of Reax on Summit, beyond what is
reasonable for a batch queue, even for a 10-step simulation
on a 32K atom system.



Fig. 12. Speedup of LAMMPS potentials, Sep 2021 to Feb 2022

Fig. 13. Roofline plot of Summit

The Tersoff potential reaches the compute-bound region of
the roofline for all system sizes on Summit and achieves about
20% of the peak double-precision floating point performance.
The Tersoff potential, as mentioned above, requires half neigh-
bor lists when run with Kokkos, which maintain thread-safe
behavior through atomics.

Summit displays the same pattern as Crusher, where increas-
ing the size of the system results in a decrease of the operation
intensity, accompanied by a slight temporary increase in the
achieved performance.

V. LESSONS LEARNED

As expected when studying a scientific application on a new
architecture, we encountered several difficulties that resulted
in lessons learned that we considered would be valuable for
users attempting similar efforts. This section highlights some
of these challenges and presents our recommendations.

• Due to the fact that AMD ROCm is a relatively new soft-
ware platform, the libraries and tools are in active devel-
opment. As a result, gathering performance metrics from
AMD GPU hardware is not well-established in literature
yet, and with all the variations of roofline models that
exist (instructional, operational, hierarchical), the process
required us to customize some of the metrics to suit the
available information. After selecting instruction counters
and memory metrics from rocprof --list-basic,
we profiled simple kernels on Crusher to confirm that
the metrics we gathered are calculated as expected. We

then cross-referenced this with profiling output from
NSight Compute on Summit to ensure correct and iden-
tical roofline computation between AMD and NVIDIA
architectures. Understanding some of the memory metrics
and their meaning, like TCC_EA_WREQ_sum, required
additional searching and experimentation.

• The ROCm compiler requires several optimizations to be
turned on manually, such as -munsafe-fp-atomics,
which applies to the MI250X GPU architecture. This
flag is safe under many common atomic conditions, like
those found in most LAMMPS kernels, but is off by
default. Adding this compilation flag to the LAMMPS
build resulted in a 30% improvement in performance of
the Tersoff potential, and this flag is used in this work.
For a double-precision “unsafe” atomic, it is guaranteed
safe if it is 8-byte aligned, and if it resides in a coarse-
grained allocation.

• Since ROCm is in active development, there are fre-
quent releases, which sometimes move ahead of the
HPE/Cray Programming Environment. We used the latest
HPE/Cray-supported ROCm in this study, ROCm v4.5.0.

• NSight Compute was unable to separate out kernels
launched by Kokkos in LAMMPS, the kernel name
visible to ncu was the same for all Kokkos-launched
kernels. The result was profiling all Kokkos kernels, then
selecting our desired kernels in NSight Compute GUI
while post-processing the data. But, for a computationally
dense potential like Reax, the walltime increased beyond
batch queue limits.

• The sub-keywords of package kokkos comm are nu-
merous, but may hold a significant benefit for perfor-
mance tuning of Kokkos.

VI. CONCLUSION

While preparing LAMMPS tests for Spock and Crusher,
the AMD GPU-based test systems precursors to Frontier,
we investigated performance behaviors of LAMMPS using
Kokkos on their two distinct AMD GPU architectures. We ex-
amined the performance of LAMMPS on NVIDIA V100 and
A100 architectures, and AMD Instinct MI100 and MI250X
architectures.

Experiments included liquid, metal, granular, biological, and
polymer systems up to 55 million atoms in size, evaluating the
Reax, Lennard-Jones, EAM, Granular, Tersoff, and particle-
particle particle-mesh (PPPM) potentials.

We first implemented hipFFT into the PPPM long-range
solver, which allowed us to port the PPPM calculations to
AMD GPU architectures. The speeds of a TIP3P water model
and Lennard-Jones Class2 polymer model utilizing PPPM
improved by up to 6x with the implementation of hipFFT.

Kokkos behaviors in each potential were then evaluated
using combinations of values of the LAMMPS package
kokkos flags neigh, neigh/thread, pair/only,
comm, newton, and pair/qeq (Reax only).

By customizing Kokkos behavior to take advantage of these
strengths, simulation speed was improved by more than 20%



on the MI100 and 25% on the MI250X, compared to the speed
using default settings. For example, a 360,000-atom TIP3P
water model improved by 18% on the MI100 when using the
keyword neigh/thread on.

The AMD profiler, rocprof, and NVIDIA NSight Com-
pute profiler, ncu, were used to conduct performance anal-
ysis on Crusher and Summit. Performance metrics targeting
memory accesses and double-precision floating-point opera-
tions were gathered, and the results were used to evaluate
experiments and inform further areas of optimization. These
results are aggregated into operational roofline models [11],
which present achieved floating-point performance. Opera-
tional rooflines were constructed for the Tersoff, Reax, and
Lennard-Jones potentials.

This work presents an overview of performance portability
of the LAMMPS molecular dynamics code across NVIDIA
and AMD GPU-based architectures. The findings observed for
the different potentials, the methodology utilized in developing
operational roofline models on NVIDIA and AMD GPUs,
as well as optimizations explored for each architecture will
be useful for LAMMPS users as well as the HPE/Cray EX
supercomputer community interested in porting applications
across NVIDIA and AMD GPU-accelerated platforms.

ACKNOWLEDGMENT

The authors would like to thank Sunita Chandrasekaran and
Nick Curtis for their valuable insights in the development of
operational roofline models, and Stan Moore for the feedback
provided while developing this suite of LAMMPS tests.

This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

REFERENCES

[1] . https://www.hpcwire.com/2019/05/07/
cray-amd-exascale-frontier-at-oak-ridge/, 2019.

[2] Spock quickstart guide. https://docs.olcf.ornl.gov/systems/spock quick
start guide.html, 2021.

[3] TOP500 Supercomputer Sites. https://www.top500.org, 2021.
[4] AFW HPC-11 User Documentation. https://docs.afw.ornl.gov, 2022.
[5] Crusher quickstart guide. https://docs.olcf.ornl.gov/systems/crusher

quick start guide.html, 2022.
[6] LAMMPS user manual, kspace style command. https://docs.lammps.

org/kspace style.html, 2022.
[7] LAMMPS user manual, package command. https://docs.lammps.org/

package.html, 2022.
[8] Summit quickstart guide. https://docs.olcf.ornl.gov/systems/summit

user guide.html, 2022.
[9] Ding, Nan and Williams, Samuel. An Instruction Roofline Model for

GPUs. In 2019 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems, 2019.

[10] Matthew Leinhauser, René Widera, Sergei Bastrakov, Alexander Debus,
Michael Bussmann, and Sunita Chandrasekaran. Metrics and design of
an instruction roofline model for amd gpus, 2021.

[11] Williams, Samuel, Waterman, Andrew, and Patterson, David. An
Insightful Visual Performance Model for Multicore Architectures. In
Communications of the ACM, volume 52, pages 65–76, April 2009.

[12] Charlene Yang, Kurth, Thorsten, and Williams, Samuel. Hierarchical
Roofline analysis for GPUs: Accelerating performance optimization for
the NERSC-9 Perlmutter system. Concurrency Computational Pract and
Exper, 2020.


