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ABSTRACT

The Spallation Neutron Source (SNS) at Oak Ridge National
Laboratory (ORNL) will undergo proton power upgrade (PPU)
increasing proton beam power from 1.4 MW to 2.8 MW. From
the 2.8 MW, 2.0 MW will go to the current First Target Station
(FTS) while the rest of the power will go to the future Second
Target Station (STS). FTS uses a liquid mercury target which is
contained in a 316L stainless steel vessel. The proton beam is
pulsed at 60 Hz with a pulse of about 0.7us. When the proton
beam hits the target, the intense energy deposition leads to a
rapid rise in temperature in the mercury. This temperature rise
creates pressure waves that propagate through the mercury and
cause cavitation erosion. The power upgrade will cause stronger
pressure waves that will further increase damage due to
cavitation. Injection of small helium bubbles in the mercury has
been an efficient method of mitigating the pressure wave at 1.4
MW. However, at higher power, additional mitigation is
necessary. To address this, the 2MW target vessel will be
equipped with swirl bubblers and an additional gas injection
port near the nose to inject more gas in the target. To develop
gas injection strategy and design, flow visualization in water
with a transparent prototypical target (“visual target”) were
performed. Bubble sizes and their spatial distribution in the flow
loop are crucial to understanding the effectiveness of the bubbles
in mitigating pressure waves. Bubbles were generated in the
visual target under varied conditions of input pressures with
both helium and air. Images were captured using a high-speed
camera at varied frame rates at different positions away from the
swirl bubbler and different depths in the flow loop, under varying
lighting conditions. Initially, methods such as circular Hough
transforms were applied images after series of images
processing, to obtain a general distribution of bubble sizes.
Bubbles with a diameter or size less than 500 yum are preferred
to effectively mitigate the effect of pressure waves, and this
demands an accurate bubble detection and sizing system.
Intelligent detection and identification of bubble sizes alleviate
misdetection and improves accuracies. Employing neural
networks, intelligent detection of bubble sizes, and their
distribution was developed and provides a robust alternative to
traditional techniques. Human intervention is employed to label
in-focus and out-of-focus bubbles in the set of training images.
An object detection network using a pre-trained Convolutional
Neural Network was created that extracted the features from the
training images. Data augmentation was used to improve
network accuracy through a random transformation of the
original data.
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1. INTRODUCTION

The Spallation Neutron Source (SNS) at Oak Ridge
National Laboratory (ORNL) uses a mercury-based liquid metal
target contained in a 316L stainless-steel vessel. Upon the impact
of the current 1.4 MW, 60 Hz proton beam on the target, the
deposition of energy creates a rapid rise in temperature along
with strong pressure waves that propagate through the mercury
and the vessel walls. These pressure waves induce cavitation
damage on the walls of the stainless-steel container, stimulate
high stresses, and reduce the working line of the target. Figure 1.
shows the cavitation damage on the wall of the target. The SNS
target is planned to undergo a proton-power upgrade which will
increase the power from 1.4 MW to 2.0 MW on the mercury
target. The proton-power upgrade would further exacerbate the
damage due to cavitation as a result of stronger pressure waves.
The pressure field developed when the proton beam hits the
target can be estimated:

BK
focy

P=0Q

Where, P is the increase in pressure, B the volumetric
expansion coefficient, f the beam pulse frequency, p the mass
density, Q the volumetric power, K the bulk modulus and Cythe
constant volume specific heat.
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Figure 1. Mercury vessel specimens cut from SNS Targets
from inner (non-containment) beam windows. Horizontal
orientation during operation in (A) was close to the photograph
orientation and along the fracture line in (B). Specimen (A)
diameter is 60 mm; specimen (B) diameter is 57 mm; original

thicknesses were 3 mm [3].
An efficient method used for mitigation of pressure waves
in the current 1.4 MW target is to inject helium bubbles in
mercury [1][2][3]. At higher power, additional mitigation
requirements led to the development of upgraded target
vessel design with swirl bubblers and an additional gas
injection port to inject more gas in the target. The schematic
of the swirl bubbler is shown in figure 2. The fixed vane
generates the swirling flow and is accelerated through the
venturi. The gas is injected through the center of the vanes
along the vortex line. The gas vortex line gets sheared at the
exit due to the Coanda effect on the rounded edge at the flow
exit

Fixed vanes
Figure 2: Swirl bubble layout [5]

Venturi

In order to understand and develop the gas injection
strategy, a scale 1:1 transparent prototypical (“visual target”)
target made of acrylic was used for flow visualization.
Understanding the size and distribution of bubbles are crucial to
the mitigation of pressure waves. The bubble size distribution of
the bubbles generated by the swirl bubblers depends on the mass
flow rate. The characteristic bubble diameter can be estimated by

[6]: ;
a3\
d=126 (73

Where, o is the surface tension, p is the fluid density, € is
the visco-dissipation ratio = Dg fg , D¢ is the diameter of the

venturiand f. is the swirl bubbler frequency at the outlet (
2V tan (65)/ D).

The visual target was used to perform flow visualization
experiments to develop gas injection strategy and design. In the
visual target, water is used as the flow medium instead of
mercury and the size of bubbles is measure using a high-speed
camera. Bubble sizes and their distribution in the flow loop are
crucial to understanding the effectiveness of the bubbles in
mitigating pressure waves. Different approaches are used for
detecting bubbles and estimating sizes. Detection of bubbles by
an initially pre-processing sequence of images including
performing morphological operations and then detecting the
bubble sizes was performed on images of bubbles from the visual
target using FIJI [7]. The process of image processing and
detection can be automated using a Python script within the FIJI
environment. An other approach is to use OpenCV (Open Source
Computer Vision Library) library which is capable of image
processing and real-time computer vision [8][9]. OpenCV
library is prominently used in object detection and tracking for
varied applications [10][11]. A popular method for detecting
circular bubble diameter is through the use of Circular Hough
Transforms (CHT), which is based on Hough transforms used to
detect edges [12][13]. Hough transforms have also been used to
detect partially occluded ellipses [14][15].

Machine learning has been used in a variety of fluid
mechanics applications ranging from flow control, Particle
Image Velocimetry (PIV) processing, feature extraction,
dimensionality reduction, optimization, and reduced-order
modeling [16][17]. Object detection and tracking using machine
learning including the use of neural networks have been used in

3 © 2019 by ASME



varied engineering and fluid mechanics problems [18][19][20].
Convolutional neural networks (CNNs) have been successful in
outperforming traditional image processing methods and object
detection algorithms easily with error rates below those with the
human intervention [21]. A detailed study explored the use of
neural networks for bubble pattern recognition, to two-phase
flows [22]. Architecture for synthesizing bubbly flow images
called bubble generative adversarial networks (BubGAN) was
developed using generative adversarial networks, which could
generate realistic synthetic bubble flow images [23]. The study
showed that convolutional neural networks (CNNs) were better
suited for classifying bubbles and for identifying the geometric
centers of the bubbles. The study also identified the use of
multiplayer perceptron’s (MLPs) suitable for noise removal in
images. A method was also developed to detect bubble sizes
called BubCNN, which included a faster region-based CNN
(RCNN) detector to locate bubbles and a shape regression CNN
for shape approximation [24].

The use of machine learning can solve issues arising from the
complexities of background noise and misclassification of
images.

2. MATERIALS AND METHODS

Figure 3. shows the visual target flow loop, which is a
replica of the SNS target with transparent flow channels and with
water as the flow medium. The flow enters through the two side
channels and leaves through the central channel. The flow
velocity was set at ~Im/s. Bubbles were generated inside the
visual target using Helium gas at 1.65 SLPM (0.294 g/min) in

each of the flow channels.

Swirl bubblers  Return channel Bulkinlets

1 n 1 I -
i |

H | Port side

(b)
Figure 3: (a) Top view of the visual target, (b) perspective
view with image of the swirl bubbler highlighted.

The measurements for the experiments were made along the
center of the port side flow channel and at a depth of 30 mm from
the surface. An Olympus i-speed 2 with Edmund optics 63741
0.5 x 65mm telecentric lens was used to capture images through
the transparent upper surface. Initially, tests were performed
22.2mm x 16.2 mm region and a set of 100 images for used to
determine bubble sizes using Circular Hough Transforms and
OpenCV based bubble size detection. Each image set of 100
images was captured at distances of 55mm, 115mm, and 205 mm
downstream from the swirl bubblers on the port side channel.
The contrast of the image was adjusted using background
lighting using a light mercury lamp. Python libraries including
SimplelTK, pims, OpenCV, and scikit-image was used form
image processing. The calculations of the size and distributions
were performed using NumPy, math, and pandas libraries.
Traditional image processing methods including adjusting
exposure, Otsu thresholding, and watershed thresholding were
used to pre-process the images. Figure 4(a) shows the Original
image with different image processing steps applied and the final
image was used for bubble detection and size estimation with
OpenCV. For detections with Circular Hough Transforms, image
pre-processing including Hierarchical segmentation which was
used to was used to obtain the outline of bubbles as shown in
Figure 4 (b) [25][26].
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Figure 4: (a) Original image before processing and applying
OpenCV based detection after processing (b) Original image
before processing, Image after applying hierarchical
segmentation on processed image, applying circular Hough
transform.

Machine learning based on object detection was used as a
more accurate way of detecting the bubbles and classifying in-

focus bubbles with out of focus bubbles. For the experiments, we
captured images using the same camera and lens as in the
Circular Hough transform case. The images used in the analysis
were captured at 55 mm from the bubblers and a depth of 30 mm
from the top surface. For each of the images, 1 mm corresponded
to 157.06 pixels and each image had a size of 576 x 432 pixels.
400 images were captured and 60% of the images were used for
training and the remaining for testing. The images were labeled
as in focus images using the MATLAB image labeler. The image
set was then divided into training and test data set. The test data
set would then be used to evaluate the result of training. You
Only Look Once (YOLO) is a popular framework for object
detection and it consists of 24 convolutional layers and 2 fully
connected layers [27][28]. The network is capable of processing
images in real-time at 45 fps and the Fast YOLO version can
process images at 155 fps. YOLOv2 which is an improved
version of YOLO with dimension cluster, anchor boxes, and
multiscale training [29]. YOLOv2 has a feature extraction
network and a detection network. A pre-trained version of the
ResNet-50, which is a 50-layer deep CNN trained on more than
a million images from the ImageNet database is used for feature
extraction network. [30][31]. YOLOV3 is an improved version
of YOLOV2 with better feature extraction and can predict boxes
in 3 different scales [32]. Random transformations (Data
Augmentation) of the original data is performed to increase
network accuracy. Training is performed in the MATLAB
environment using an NVIDIA Quadro P4000 GPU [33].
SqueezeNet which is trained on the ImageNet dataset is used as
the base network. Random transformation of the original data
(Data augmentation) was made to improve network accuracy.
The average precision metric available in the Computer Vision
Toolbox in MATLAB is used to evaluate the performance of the
trained object detectors. The bubble sizes were estimated from
the size of bounding boxes generated from the object detector on
the images of the bubbles.

3. RESULTS AND DISCUSSION

For the preliminary experiments, a sequence of image
processing steps was applied to images the original and final
images obtained were obtained. The bubble size (diameter)
distribution computed from applying OpenCV based detection is
shown in fig 5. Figures 5 (a)-(c) shows the variation in the
distribution of bubbles at lengths of 55mm, 115 mm, and 205
mm away from the swirl bubbler, along the center of the channel
at 30mm from the upper surface of the flow channel. Figure 5(d)
shows the comparison of bubble sizes at varied distances with
their probability distribution of bubble sizes. In all the cases
shown in figure 5, the bubble sizes are limited to less than 0.5
mm, with a very small number of bubbles sizes greater than 2
mm. Figure 5(d) also shows a clear drop in relative bubble sizes
as the distance from the swirl bubblers increases. The results
obtained using clearly show the general trend in bubble size
distributions (Kernel density estimation) for images capture at
each length and their variation in relative sizes with distance
from the swirl bubbler.
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Figure 5: (a)-(c)Bubble size distribution (Kernel density
estimation) at different distances away from the swirl bubblers
in port side inlet channels at different distances from the swirl
bubbler (d) violin plots showing comparison of bubble sizes at
varied distances with their probability distribution obtained
using OpenCV based detection.

The Hough transforms and OpenCV based detection
methods are robust techniques and can detect shapes even with
occlusions. In the cases where all the bubbles are in focus with
de-noising, filtering, contrast adjustment, and adjusting the
threshold, even imperfect circles can be detected using different
image processing methods including circular Hough transforms.
The complexity arises in the event when there are multiple layers
of bubbles that are being generated by the swirl bubblers, and
there is a large number of bubbles that are below or above the
layer of bubbles for which the bubble size distribution has to be
studied. These bubbles, which are in the layers above or below,
show up in the images captured as out of focus with a lack of a
definite boundary. In addition, these out of focus bubbles also
create variations in intensities so that the boundaries in the
bubbles in focus are hard to detect and makes it difficult to
subtract the out-of-focus bubbles from the in-focus ones.
Coalescence of the bubbles further adds to complex shapes of the
bubbles and identifying these complex shapes would be
challenging. The most accurate method of estimating the size is
to manually measure the in-focus bubbles in the layer of fluid
required. This process will involve human intervention and in
order to obtain a good average of size distribution in the flow, it
would take a large amount of time.

Figure 6: Sample labelled imageshowing the bounding
boxes corresponding to the bubbles in focus.

Bubble size detection was performed using deep
learning, to circumvent the drawbacks of methods such as
OpenCV based detection and Hough transforms. The images
were labeled using MATLAB image labeler and 60% of the
image set was trained and 40% was used as the test dataset.
Manually labeling images is very time consuming and only
relatively large bubbles were labeled for the current study. Figure
6 shows a sample labeled image with bounding boxes that were
drawn over the bubbles in focus. The images were trained in the
network without any pre-processing, for 5000 iterations, learning
rate of 0.0008, with a warm-up period of 1000, L2 regularization
of 0.0005, and penalty threshold of 0.5. Figure 7 shows the
learning rate which gradually increases for the first 1000
iteration and drops drastically close to 3500 iterations. The total
loss drops drastically within the first few 100 iterations. This
shows that for the training data, the deviation in predicted values
from actual values drops drastically in the first 100 iterations.
The average precision was monitored using the MATLAB’s
computer vision toolbox.
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Figure 7: Learning rate and total loss plot
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Figure 8: (a) Bubbles detected in the test set of images
(b) Bubble size distribution (Kernel density estimation) at
different distances away from the swirl bubblers using deep
learning.

Figure 8(a). Shows that network was able to detect two of the
bubbles in focus accurately. Based on the detected bubbles in the
test set, we obtained the bubble size distribution shown in Figure
8(b). Most of the smaller bubbles were not labeled and trained,
this was attributed to the background noise that existed in the
image, making it difficult to classify the in-focus and out of focus
images. Hence only the larger bubbles appear in the detection in
the test dataset. A set of images of lesser background noise, with
image processing, can improve classifying smaller in-focus
images that are less than 0.5 mm. The same method can be
applied to the new set to provide accurate detection and sizing of
bubbles.

4. CONCLUSION
Obtaining accurate bubble distribution is crucial in
understanding the effectiveness of the bubbles in mitigating
cavitation causing pressure waves. Different techniques such as
Circular Hough Transforms and OpenCV based object detection
were performed on processed images to detect and estimate
bubble sizes. However, these methods suffered from an inability
to separate in-focus images from out-of-focus images. Besides,
each set of images required a different method of image
processing, depending on the exposure of the image and its
quality of visibility the bubble edge boundaries. In the study, we
used the YOLOV3 object detection framework to detect bubble
size on images without any prior image processing being
performed. The trained network was able to detect large bubbles

in-focus accurately. Smaller bubbles were not labeled in the
training image dataset because of difficulty in classifying smaller
bubbles which are in-focus and out-of-focus bubbles. New image
sets with smaller bubbles that can be distinguished from out-of-
focus bubbles can be trained to obtain improved results with the
capability to detect bubbles less than 0.5mm. Through
hyperparameter tuning and improving image quality, improved
accuracies of results can be obtained along with the detection of
smaller bubbles.
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