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ABSTRACT
The Spallation Neutron Source (SNS) at Oak Ridge National 

Laboratory (ORNL) will undergo proton power upgrade (PPU) 
increasing proton beam power from 1.4 MW to 2.8 MW. From 
the 2.8 MW, 2.0 MW will go to the current First Target Station 
(FTS) while the rest of the power will go to the future Second 
Target Station (STS). FTS uses a liquid mercury target which is 
contained in a 316L stainless steel vessel. The proton beam is 
pulsed at 60 Hz with a pulse of about 0.7s. When the proton 
beam hits the target, the intense energy deposition leads to a 
rapid rise in temperature in the mercury. This temperature rise 
creates pressure waves that propagate through the mercury and 
cause cavitation erosion. The power upgrade will cause stronger 
pressure waves that will further increase damage due to 
cavitation. Injection of small helium bubbles in the mercury has 
been an efficient method of mitigating the pressure wave at 1.4 
MW. However, at higher power, additional mitigation is 
necessary. To address this, the 2MW target vessel will be 
equipped with swirl bubblers and an additional gas injection 
port near the nose to inject more gas in the target. To develop 
gas injection strategy and design, flow visualization in water 
with a transparent prototypical target (“visual target”) were 
performed. Bubble sizes and their spatial distribution in the flow 
loop are crucial to understanding the effectiveness of the bubbles 
in mitigating pressure waves. Bubbles were generated in the 
visual target under varied conditions of input pressures with 
both helium and air. Images were captured using a high-speed 
camera at varied frame rates at different positions away from the 
swirl bubbler and different depths in the flow loop, under varying 
lighting conditions. Initially, methods such as circular Hough 
transforms were applied images after series of images 
processing, to obtain a general distribution of bubble sizes. 
Bubbles with a diameter or size less than 500 m are preferred 
to effectively mitigate the effect of pressure waves, and this 
demands an accurate bubble detection and sizing system. 
Intelligent detection and identification of bubble sizes alleviate 
misdetection and improves accuracies. Employing neural 
networks, intelligent detection of bubble sizes, and their 
distribution was developed and provides a robust alternative to 
traditional techniques. Human intervention is employed to label 
in-focus and out-of-focus bubbles in the set of training images. 
An object detection network using a pre-trained Convolutional 
Neural Network was created that extracted the features from the 
training images. Data augmentation was used to improve 
network accuracy through a random transformation of the 
original data. 
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1. INTRODUCTION
The Spallation Neutron Source (SNS) at Oak Ridge 

National Laboratory (ORNL) uses a mercury-based liquid metal 
target contained in a 316L stainless-steel vessel. Upon the impact 
of the current 1.4 MW, 60 Hz proton beam on the target, the 
deposition of energy creates a rapid rise in temperature along 
with strong pressure waves that propagate through the mercury 
and the vessel walls. These pressure waves induce cavitation 
damage on the walls of the stainless-steel container, stimulate 
high stresses, and reduce the working line of the target. Figure 1. 
shows the cavitation damage on the wall of the target. The SNS 
target is planned to undergo a proton-power upgrade which will 
increase the power from 1.4 MW to 2.0 MW on the mercury 
target. The proton-power upgrade would further exacerbate the 
damage due to cavitation as a result of stronger pressure waves. 
The pressure field developed when the proton beam hits the 
target can be estimated:

𝑃 = 𝑄 
𝛽𝐾

𝑓𝜌𝑐𝑉

Where, P is the increase in pressure, β the volumetric 
expansion coefficient, f the beam pulse frequency, ρ the mass 
density, Q the volumetric power, K the bulk modulus and 𝐶𝑣the 
constant volume specific heat. 

http://energy.gov/downloads/doe-public-access-plan
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Figure 1. Mercury vessel specimens cut from SNS Targets 

from inner (non-containment) beam windows. Horizontal 
orientation during operation in (A) was close to the photograph 
orientation and along the fracture line in (B). Specimen (A) 
diameter is 60 mm; specimen (B) diameter is 57 mm; original

thicknesses were 3 mm [3].
An efficient method used for mitigation of pressure waves 
in the current 1.4 MW target is to inject helium bubbles in 
mercury [1][2][3]. At higher power, additional mitigation 
requirements led to the development of upgraded target 
vessel design with swirl bubblers and an additional gas 
injection port to inject more gas in the target. The schematic 
of the swirl bubbler is shown in figure 2. The fixed vane 
generates the swirling flow and is accelerated through the 
venturi. The gas is injected through the center of the vanes 
along the vortex line. The gas vortex line gets sheared at the 
exit due to the Coandă effect on the rounded edge at the flow 
exit

Figure 2: Swirl bubble layout [5]

In order to understand and develop the gas injection 
strategy, a scale 1:1 transparent prototypical (“visual target”) 
target made of acrylic was used for flow visualization. 
Understanding the size and distribution of bubbles are crucial to 
the mitigation of pressure waves. The bubble size distribution of 
the bubbles generated by the swirl bubblers depends on the mass 
flow rate. The characteristic bubble diameter can be estimated by 
[6]:

𝑑 = 1.26 
𝜎3

𝜖2 𝜌3

1/5

Where, 𝜎 is the surface tension, ρ is the fluid density, ϵ is 
the visco-dissipation ratio = 𝐷2

𝑒𝑓3
𝑒 , 𝐷𝑒 is the diameter of the 

venturiand 𝑓𝑒 is the swirl bubbler frequency at the outlet (
2𝑉𝑒𝑡𝑎𝑛 (𝜃𝑓) 𝐷𝑒). 

The visual target was used to perform flow visualization 
experiments to develop gas injection strategy and design. In the 
visual target, water is used as the flow medium instead of 
mercury and the size of bubbles is measure using a high-speed 
camera. Bubble sizes and their distribution in the flow loop are 
crucial to understanding the effectiveness of the bubbles in 
mitigating pressure waves. Different approaches are used for 
detecting bubbles and estimating sizes. Detection of bubbles by 
an initially pre-processing sequence of images including 
performing morphological operations and then detecting the 
bubble sizes was performed on images of bubbles from the visual 
target using FIJI [7]. The process of image processing and 
detection can be automated using a Python script within the FIJI 
environment. An other approach is to use OpenCV (Open Source 
Computer Vision Library) library which is capable of image 
processing and real-time computer vision [8][9]. OpenCV 
library is prominently used in object detection and tracking for 
varied applications [10][11]. A popular method for detecting 
circular bubble diameter is through the use of Circular Hough 
Transforms (CHT), which is based on Hough transforms used to 
detect edges [12][13]. Hough transforms have also been used to 
detect partially occluded ellipses [14][15]. 

Machine learning has been used in a variety of fluid 
mechanics applications ranging from flow control, Particle 
Image Velocimetry (PIV) processing, feature extraction, 
dimensionality reduction, optimization, and reduced-order 
modeling [16][17]. Object detection and tracking using machine 
learning including the use of neural networks have been used in 
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varied engineering and fluid mechanics problems [18][19][20].  
Convolutional neural networks (CNNs) have been successful in 
outperforming traditional image processing methods and object 
detection algorithms easily with error rates below those with the 
human intervention [21]. A detailed study explored the use of 
neural networks for bubble pattern recognition, to two-phase 
flows [22]. Architecture for synthesizing bubbly flow images 
called bubble generative adversarial networks (BubGAN) was 
developed using generative adversarial networks, which could 
generate realistic synthetic bubble flow images [23].  The study 
showed that convolutional neural networks (CNNs) were better 
suited for classifying bubbles and for identifying the geometric 
centers of the bubbles. The study also identified the use of 
multiplayer perceptron’s (MLPs) suitable for noise removal in 
images. A method was also developed to detect bubble sizes 
called BubCNN, which included a faster region-based CNN 
(RCNN) detector to locate bubbles and a shape regression CNN 
for shape approximation [24].  
The use of machine learning can solve issues arising from the 
complexities of background noise and misclassification of 
images.

2. MATERIALS AND METHODS
Figure 3. shows the visual target flow loop, which is a 

replica of the SNS target with transparent flow channels and with 
water as the flow medium. The flow enters through the two side 
channels and leaves through the central channel. The flow 
velocity was set at ~1m/s. Bubbles were generated inside the 
visual target using Helium gas at 1.65 SLPM (0.294 g/min) in 
each of the flow channels. 

(a)

(b)
Figure 3: (a) Top view of the visual target, (b) perspective 

view with image of the swirl bubbler highlighted.

The measurements for the experiments were made along the 
center of the port side flow channel and at a depth of 30 mm from 
the surface. An Olympus i-speed 2 with Edmund optics 63741 
0.5 x 65mm telecentric lens was used to capture images through 
the transparent upper surface. Initially, tests were performed 
22.2mm x 16.2 mm region and a set of 100 images for used to 
determine bubble sizes using Circular Hough Transforms and 
OpenCV based bubble size detection. Each image set of 100 
images was captured at distances of 55mm, 115mm, and 205 mm 
downstream from the swirl bubblers on the port side channel. 
The contrast of the image was adjusted using background 
lighting using a light mercury lamp. Python libraries including 
SimpleITK, pims, OpenCV, and scikit-image was used form 
image processing. The calculations of the size and distributions 
were performed using NumPy, math, and pandas libraries. 
Traditional image processing methods including adjusting 
exposure, Otsu thresholding, and watershed thresholding were 
used to pre-process the images. Figure 4(a) shows the Original 
image with different image processing steps applied and the final 
image was used for bubble detection and size estimation with 
OpenCV. For detections with Circular Hough Transforms, image 
pre-processing including Hierarchical segmentation which was 
used to was used to obtain the outline of bubbles as shown in 
Figure 4 (b) [25][26].
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(a)

(b)

Figure 4: (a) Original image before processing and applying 
OpenCV based detection after processing (b) Original image 
before processing, Image after applying hierarchical 
segmentation on processed image, applying circular Hough 
transform. 

Machine learning based on object detection was used as a 
more accurate way of detecting the bubbles and classifying in-

focus bubbles with out of focus bubbles. For the experiments, we 
captured images using the same camera and lens as in the 
Circular Hough transform case.  The images used in the analysis 
were captured at 55 mm from the bubblers and a depth of 30 mm 
from the top surface. For each of the images, 1 mm corresponded 
to 157.06 pixels and each image had a size of 576 x 432 pixels.  
400 images were captured and 60% of the images were used for 
training and the remaining for testing. The images were labeled 
as in focus images using the MATLAB image labeler. The image 
set was then divided into training and test data set. The test data 
set would then be used to evaluate the result of training. You 
Only Look Once (YOLO) is a popular framework for object 
detection and it consists of 24 convolutional layers and 2 fully 
connected layers [27][28].  The network is capable of processing 
images in real-time at 45 fps and the Fast YOLO version can 
process images at 155 fps. YOLOv2 which is an improved 
version of YOLO with dimension cluster, anchor boxes, and 
multiscale training [29]. YOLOv2 has a feature extraction 
network and a detection network. A pre-trained version of the 
ResNet-50, which is a 50-layer deep CNN trained on more than 
a million images from the ImageNet database is used for feature 
extraction network. [30][31]. YOLOv3 is an improved version 
of YOLOv2 with better feature extraction and can predict boxes 
in 3 different scales [32]. Random transformations (Data 
Augmentation) of the original data is performed to increase 
network accuracy. Training is performed in the MATLAB 
environment using an NVIDIA Quadro P4000 GPU [33]. 
SqueezeNet which is trained on the ImageNet dataset is used as 
the base network. Random transformation of the original data 
(Data augmentation) was made to improve network accuracy. 
The average precision metric available in the Computer Vision 
Toolbox in MATLAB is used to evaluate the performance of the 
trained object detectors. The bubble sizes were estimated from 
the size of bounding boxes generated from the object detector on 
the images of the bubbles.

3. RESULTS AND DISCUSSION
For the preliminary experiments, a sequence of image 

processing steps was applied to images the original and final 
images obtained were obtained. The bubble size (diameter) 
distribution computed from applying OpenCV based detection is 
shown in fig 5. Figures 5 (a)-(c) shows the variation in the 
distribution of bubbles at lengths of 55mm, 115 mm, and 205 
mm away from the swirl bubbler, along the center of the channel 
at 30mm from the upper surface of the flow channel. Figure 5(d) 
shows the comparison of bubble sizes at varied distances with 
their probability distribution of bubble sizes. In all the cases 
shown in figure 5, the bubble sizes are limited to less than 0.5 
mm, with a very small number of bubbles sizes greater than 2 
mm. Figure 5(d) also shows a clear drop in relative bubble sizes 
as the distance from the swirl bubblers increases. The results 
obtained using clearly show the general trend in bubble size 
distributions (Kernel density estimation) for images capture at 
each length and their variation in relative sizes with distance 
from the swirl bubbler.
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Figure 5: (a)-(c)Bubble size distribution (Kernel density 
estimation) at different distances away from the swirl bubblers 
in port side inlet channels at different distances from the swirl 
bubbler (d) violin plots showing comparison of bubble sizes at 
varied distances with their probability distribution obtained 
using OpenCV based detection.

The Hough transforms and OpenCV based detection 
methods are robust techniques and can detect shapes even with 
occlusions. In the cases where all the bubbles are in focus with 
de-noising, filtering, contrast adjustment, and adjusting the 
threshold, even imperfect circles can be detected using different 
image processing methods including circular Hough transforms. 
The complexity arises in the event when there are multiple layers 
of bubbles that are being generated by the swirl bubblers, and 
there is a large number of bubbles that are below or above the 
layer of bubbles for which the bubble size distribution has to be 
studied. These bubbles, which are in the layers above or below, 
show up in the images captured as out of focus with a lack of a 
definite boundary. In addition, these out of focus bubbles also 
create variations in intensities so that the boundaries in the 
bubbles in focus are hard to detect and makes it difficult to 
subtract the out-of-focus bubbles from the in-focus ones. 
Coalescence of the bubbles further adds to complex shapes of the 
bubbles and identifying these complex shapes would be 
challenging.   The most accurate method of estimating the size is 
to manually measure the in-focus bubbles in the layer of fluid 
required. This process will involve human intervention and in 
order to obtain a good average of size distribution in the flow, it 
would take a large amount of time.

Figure 6: Sample labelled image showing the bounding 
boxes corresponding to the bubbles in focus.

Bubble size detection was performed using deep 
learning, to circumvent the drawbacks of methods such as 
OpenCV based detection and Hough transforms. The images 
were labeled using MATLAB image labeler and 60% of the 
image set was trained and 40% was used as the test dataset. 
Manually labeling images is very time consuming and only 
relatively large bubbles were labeled for the current study. Figure 
6 shows a sample labeled image with bounding boxes that were 
drawn over the bubbles in focus. The images were trained in the 
network without any pre-processing, for 5000 iterations, learning 
rate of 0.0008, with a warm-up period of 1000, L2 regularization 
of 0.0005, and penalty threshold of 0.5. Figure 7 shows the 
learning rate which gradually increases for the first 1000 
iteration and drops drastically close to 3500 iterations. The total 
loss drops drastically within the first few 100 iterations. This 
shows that for the training data, the deviation in predicted values 
from actual values drops drastically in the first 100 iterations. 
The average precision was monitored using the MATLAB’s 
computer vision toolbox.

Figure 7: Learning rate and total loss plot
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(a)

(b)
Figure 8: (a) Bubbles detected in the test set of images

(b) Bubble size distribution (Kernel density estimation) at 
different distances away from the swirl bubblers using deep 
learning.

Figure 8(a). Shows that network was able to detect two of the 
bubbles in focus accurately. Based on the detected bubbles in the 
test set, we obtained the bubble size distribution shown in Figure 
8(b). Most of the smaller bubbles were not labeled and trained, 
this was attributed to the background noise that existed in the 
image, making it difficult to classify the in-focus and out of focus 
images. Hence only the larger bubbles appear in the detection in 
the test dataset. A set of images of lesser background noise, with 
image processing, can improve classifying smaller in-focus 
images that are less than 0.5 mm.  The same method can be 
applied to the new set to provide accurate detection and sizing of 
bubbles.

4. CONCLUSION
Obtaining accurate bubble distribution is crucial in 
understanding the effectiveness of the bubbles in mitigating 
cavitation causing pressure waves. Different techniques such as 
Circular Hough Transforms and OpenCV based object detection 
were performed on processed images to detect and estimate 
bubble sizes. However, these methods suffered from an inability 
to separate in-focus images from out-of-focus images. Besides, 
each set of images required a different method of image 
processing, depending on the exposure of the image and its 
quality of visibility the bubble edge boundaries.  In the study, we 
used the YOLOv3 object detection framework to detect bubble 
size on images without any prior image processing being 
performed. The trained network was able to detect large bubbles 

in-focus accurately. Smaller bubbles were not labeled in the 
training image dataset because of difficulty in classifying smaller 
bubbles which are in-focus and out-of-focus bubbles. New image 
sets with smaller bubbles that can be distinguished from out-of-
focus bubbles can be trained to obtain improved results with the 
capability to detect bubbles less than 0.5mm. Through 
hyperparameter tuning and improving image quality, improved 
accuracies of results can be obtained along with the detection of 
smaller bubbles.
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