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Abstract

A new detection system has been installed at the RIKEN Nishina Center (Japan) to investigate decay properties of very neutron-rich
nuclei. The setup consists of three main parts: a moderated neutron counter, a detection system sensitive to the implantation and
decay of radioactive ions, and γ-ray detectors. We describe here the setup, the commissioning experiment and some selected results
demonstrating its performance for the measurement of half-lives and β-delayed neutron emission probabilities. The methodology
followed in the analysis of the data is described in detail. Particular emphasis is placed on the correction of the accidental neutron
background.

Keywords: Beta-delayed neutrons, Neutron and beta counters, Analysis methodology, Background correction

1. Introduction

β-delayed neutron decay is a rare process on Earth, happen-
ing in nuclear power reactors, but it dominates the disintegra-
tion of nuclei produced during the rapid (r) neutron capture
process in explosive stellar events [1]. In such environments,5

an intense burst of neutrons synthesizes, in a short time, very
neutron-rich unstable nuclei for which the neutron separation
energy S 1n in the daughter is smaller than the decay energy
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window Qβ. It can happen that also the two-neutron separa-
tion energy S 2n, in general the x-neutron separation energy S xn,10

is smaller than Qβ leading to multiple neutron emission. The
decay energy window for xn emission is Qβxn = Qβ − S xn.
The branchings for this decay mode and the number of neu-
trons emitted per decay are important quantities for our un-
derstanding of the abundance of stable elements produced at15

the end of the decay chain after neutron exhaustion in the r-
process. The probability for the emission of x neutrons is des-
ignated as Pxn and the total neutron emission probability is
Pn =

∑max
x=1 Pxn. The probability of decay with no-neutron emis-

sion is just P0n = 1 − Pn. The average number of neutrons per20
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decay, or neutron multiplicity, is Mn =
∑max

x=1 xPxn. Another
quantity of key astrophysical interest is the decay half-life T1/2
of the nuclei along the path of nucleosynthesis, governing the
initial abundances and the speed of the r-process.

Determining experimentally Pxn and T1/2 values for very ex-25

otic nuclei is one of the goals of current research in nuclear
astrophysics [2]. The challenges are to produce with sufficient
intensity the relevant nuclei located far from the valley of β-
stability and to measure accurately the corresponding quantities
in their decay. The BRIKEN collaboration [3] aims to expand30

our current knowledge [4] on Pxn and T1/2 values to the most ex-
otic neutron-rich nuclei that are accessible. To achieve this, ad-
vanced instrumentation has been developed to be used at state-
of-the-art radioactive beam facilities. Our approach to the mea-
surement of Pxn is to use direct neutron counting to select the35

βxn channel in combination with β counting which provides the
total number of decays. A new high efficiency neutron counter
has been designed [5] and assembled for this purpose. From
the different detector configurations studied in [5] we chose the
one including two CLOVER-type HPGe detectors, for γ spec-40

troscopy, that maximizes the total neutron detection efficiency
εn and at the same time minimizes the dependence of εn on
neutron energy En in the 0-5 MeV range. The detector was
combined with the Advanced Implantation and Decay Array
(AIDA) [6] and installed at the RIKEN Nishina Center. The45

setup was commissioned with radioactive beams in a parasitic
run in November 2016 using neutron-rich nuclei around mass
number A = 80. The first experimental campaign took place
in May-June 2017 with measurements on nuclei with A ∼ 80,
A ∼ 130 and A ∼ 160. The second campaign in October-50

November 2017 collected data for A ∼ 80 and A ∼ 100. New
experiments in other mass regions are planned.

This publication focuses on data from the commissioning
run. The setup and the measurements are described in Section
2. Section 3 describes the methodology followed in the anal-55

ysis of data specific to this type of experiments. The accurate
background correction of the data turns out to be critical and a
novel method is described in Section 4. Some selected results
showing the performance of the setup are presented in Section
5.60

An alternative method of analysis and background correction
for BRIKEN data has been developed [7]. Compared to the
method presented here, this method determines initial parent
activities for each of the xn decay channels from independent
fits to the corresponding time correlation histograms. These are65

combined to obtain the Pxn values applying global corrections
for the correlated neutron background contribution.

2. Experimental details

A schematic drawing of the disposition of different elements
described below, belonging to the experimental setup at the end70

of the beam line, is shown in Fig. 1.

2.1. Measurements
The experiments were performed using primary beams of

238U at high intensity (20-50 pnA) accelerated to an energy of
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Figure 1: Arrangement of elements in the experimental setup mentioned in the
text. The drawing is not to scale.

345 MeV per nucleon by the accelerator complex of the Ra-75

dioactive Isotope Beam Factory (RIBF) [8]. The beam hits a
beryllium target 4 mm thick producing a large number of fast
reaction products which are selected by the BigRIPS in-flight
separator and guided to the F11 experimental area through the
Zero-Degree Spectrometer (ZDS) [9]. Each ion in the cocktail80

of nuclei arriving at the measuring station is identified though
measurement of 1) its atomic charge Z, and 2) its mass-to-
charge ratio A/Q. These quantities are obtained from the mag-
netic rigidity Bρ, the time-of-flight (ToF) and the energy loss
(∆E) of the ion. This information is provided by the spectrom-85

eter and its ancillary detectors: plastic scintillation detectors,
position-sensitive parallel plate avalanche counters (PPAC) and
multi-sampling ionization chambers (MUSIC). The last ele-
ments of the beam line were a pair of MUSIC detectors and
a thin (1 mm thick) plastic scintillation detector (F11 plastic)90

with an area of 12 cm × 10 cm (see Fig. 1). The ions of interest
were implanted in the AIDA detector adjusting their velocity
by means of an aluminum degrader of variable thickness sit-
uated after the F11 plastic. An identification plot of the ions
implanted in AIDA during the commissioning run is shown in95

Fig. 2. The setting of the BigRIPS spectrometer was centered
on 76Ni. Neutron-rich isotopes from cobalt to gallium were im-
planted, most of which are β-delayed neutron emitters. This
included 475 events for the doubly magic 78Ni.

2.2. Setup and instrumentation100

The implantation detector AIDA [10] consists of a stack of
six silicon double-sided strip detectors (DSSD) with a spacing
of 10 mm between them. The PCB frame of the DSSD is sus-
pended at the corners on thin titanium rods inside the AIDA
nose made of 1 mm thick aluminum with a cross-section of105

10 cm × 10 cm. The nose is closed on the beam side by an alu-
minized Mylar foil to ensure light tightness. Each DSSD has
a thickness of 1 mm and an area of 71.68 mm × 71.68 mm,
with 128 strips 0.51 mm wide on each side. The strips on the
two sides are perpendicular to each other and provide high res-110

olution position information in the horizontal (X) and vertical
(Y) directions. Specially made flat cables running inside the
nose bring the strip signals to the front-end readout electron-
ics located about 70 cm away. Dual electronic chains are used
to process the signals from each strip. The low-gain branch115
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Figure 2: Identification plot of ions implanted in AIDA during the commission-
ing run. The plot shows the atomic number Z versus the mass-to-charge ratio
A/Q of the ion. The setting of the BigRIPS spectrometer was centered on 76Ni.

(20 GeV range) is used to process the high energy implantation
signals. The high-gain branch (20 MeV range) is used to iden-
tify the much lower energy signals from β particles emitted in
the decay of the radioactive ions. The dual electronic process-
ing, implemented using ASICs, minimizes the overload recov-120

ery time for β registration to a few µs. The stack of Si DSSDs is
positioned at the geometrical centre of the neutron detector with
the electronics located outside, downstream in the beam direc-
tion. A plastic scintillation detector of thickness 10 mm (AIDA
plastic) is positioned on the beam axis 120 cm downstream of125

the stack to detect particles that pass through.
During the experiments in October-November 2017 the

AIDA detector was replaced by the WA3ABI detector [11]
which consists of a stack of four Si DSSDs with 3 mm
wide strips. The advantage is that these DSSDs are narrower130

(40 mm × 60 mm) allowing us to move the CLOVER detectors
closer and increase the γ detection efficiency. In addition we
used a new implantation-decay detector made of YSO scintilla-
tion material developed at the University of Tennessee [12, 13].
This detector consists of an array of 48×48 closely packed crys-135

tals with dimension 1 mm×1 mm×5 mm. The array is coupled
through a light guide to a H8500B flat panel type photomulti-
plier tube (PMT) with an 8× 8 segmented anode that is readout
with a resistor network. Both detectors were used at the same
time with WA3ABI positioned off-centre ∼ 20 mm upstream140

and the YSO detector positioned off-centre ∼ 20 mm down-
stream. A full description of this implantation-decay setup and
its performance will be given in a forthcoming publication.

During the May-June 2017 experiments we added a thin large
area Si detector to the setup. The purpose of this ∆E detec-145

tor is to help in the identification of light particles (p, d, α, ...)
coming with the beam. It is a single sided strip detector of
quasi-rectangular shape and dimension 134 mm×123 mm with
a thickness of 330 µm. It has 26 horizontal strips combined
into two readout channels (top and bottom). The detector was150

placed about 50 cm upstream before the neutron detector.
The BRIKEN neutron counter consists of an array of 140

3He filled proportional tubes embedded in a large volume of
polyethylene (PE) acting as a neutron energy moderator. Very
low-energy neutrons have a large interaction probability with155

the gas in the tubes through the reaction n+ 3He→ 3H+p. This
reaction liberates an energy of 764 keV that is easily detected.
The PE moderator has external dimensions of 90 cm× 90 cm×
75 cm, with a longitudinal hole (in the beam direction) of cross-
section 11.6 cm × 11.6 cm into which AIDA is inserted from160

the back. The PE moderator is constructed as a stack of 5 cm
thick slabs in the longitudinal direction held together by stain-
less steel rods passing through the corners. The lateral sides and
the top of the PE volume are covered with 1 mm thick Cd sheets
and additional slabs of PE of 25 mm for neutron background165

attenuation. The two CLOVER detectors are inserted horizon-
tally from opposite sides into transverse holes of cross-section
11 cm×11.6 cm facing the stack of DSSDs. Four different types
of 3He tube were used in the array and their characteristics are
summarized in Table 1. The UPC tubes come from the BELEN170

detector [14] and the ORNL tubes come from the 3Hen detec-
tor [15]. The RIKEN and ORNL tubes were manufactured by
GE Reuter Stokes [16] and the UPC tubes by LND Inc [17].
The 60 cm long UPC, ORNL1 and ORNL2 tubes are arranged
around the AIDA hole and are centred longitudinally on the175

DSSD stack. The shorter RIKEN tubes (30 cm) are disposed
on both sides of each CLOVER detector hole. The transverse
position distribution of the tubes is symmetrical and follows an
approximate ring geometry as indicated in Fig. 3.

We have calculated the efficiency of the neutron detector with180

Monte Carlo (MC) simulations using the Geant4 Simulation
Toolkit [18]. Figure 4 shows the total efficiency and the effi-
ciency per ring as a function of neutron energy. Up to 0.5 MeV
the total efficiency varies within ±0.3% and has an average
value of 67.2%. The efficiency decreases to 65.5% at 1 MeV,185

then drops to 60.6% at 2.5 MeV and 51.9% at 5 MeV. We used
experimental neutron spectra [19, 20] to simulate average effi-
ciencies for a few known β-delayed neutron emitters with Qβ1n

values between 2 MeV and 5.8 MeV. The resulting efficiencies
vary from 67.2% to 66.1%. A similar simulation was made us-190

ing the known spectrum of 252Cf [21] extending up to 20 MeV
with an average energy of 〈En〉 = 2.13 MeV and a value of
61.8% was obtained . This value agrees well with the experi-
mental result of 61.4(17)% obtained during the characterization
of the BRIKEN neutron counter with a 252Cf source [22]. From195

these results we set the nominal neutron detection efficiency of
the counter in the present configuration for isotopes with low
or moderate Qβ1n windows to ε̄n = 66.8(20)%. This value is
further investigated below (Section 5) using the results of mea-
surements presented here.200

We placed a PE shielding against fast neutrons coming from
the beam line approximately 60 cm upstream of the neutron
detector. The shielding has a thickness of 20 cm, a cross-
section of 90 cm × 90 cm and a central hole for the beam of
11.6 cm × 11.6 cm. Cadmium sheets were fastened to the back205

of the shielding. At the front of the shielding two large plastic
scintillation detectors were attached, above and below the hole,
with dimensions 45 cm×20 cm×1 cm. These detectors serve to
discriminate against fast neutrons from the beam (VETO plas-
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Table 1: Main characteristics (gas volume and pressure) and number of the
different types of 3He tubes used in the BRIKEN neutron counter.

Type Length Diameter Pressure Number
(mm) (mm) (atm)

RIKEN 300 25.4 5 24
UPC 600 25.4 8 40

ORNL1 609.6 25.4 10 16
ORNL2 609.6 50.8 10 60

Figure 3: Distribution of 3He tubes around the AIDA hole (in white). The size
of the transverse holes for the CLOVER detectors is indicated with the dashed
line. The color indicates the type of tube (see Table 1). Green: RIKEN, red:
UPC, light-blue: ORNL1, pink: ORNL2. The black continuous line connects
the tubes belonging to each of the seven rings defined. Ring 1 is the inner most.
Ring 7 is the outer most.

tics).210

The 3He tubes are connected to the preamplifiers via double-
shielded coaxial cables to minimize noise pickup. These are
Mesytec MPR-16-HV modules with 16 independent channels
[23]. A total of 10 modules are used to accommodate all the
tubes. Four of them have a differential output and the remainder215

have unipolar outputs. Before being sent to the sampling digi-
tizer modules, the differential signals are converted into unipo-
lar signals using 16 channel converter cards designed at the Ac-
celerator Laboratory of the University of Jyväskylä (JYFL). A
common high voltage (HV) is applied to all the tubes connected220

to a preamplifier module using a remotely controllable MPOD
system from Wiener with ISEG HV cards [24]. The slow con-
trol system for this and other ancillary instrumentation was de-
veloped at ORNL (C. J. Gross and N. T. Brewer). The volt-
ages applied are 1450 V for RIKEN and UPC tubes, 1350 V225

for ORNL1 tubes , and 1750 V for ORNL2 tubes. A common
pulser signal is fed to all preamplifier modules. The pulse gen-
erator is driven by a precision clock running at 10 Hz. One
of the pulser signals is sent directly to a free digitizer channel.
The pulser is used to determine the data acquisition live time230

accurately.
The CLOVER detectors come from the CLARION array of
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Figure 4: Efficiency of the BRIKEN neutron counter as a function of neutron
energy. The total efficiency (black symbols) and the contribution of each ring
(colored symbols) is shown. See Fig. 3 for the definition of rings.

Oak Ridge National Laboratory [25]. The four crystals in each
detector have a diameter of 50 mm and a length around 80 mm.
They are assembled inside the Al nose at 10 mm from the front235

face. The nose has a section of 10.1 cm × 10.1 cm. We use
the preamplified signals from the central contacts (eight in to-
tal) which are sent directly to a digitizer module. The HV is
provided by the MPOD system.

A picture of the full setup can be seen in Fig. 5.240

Figure 5: Photograph of the full BRIKEN setup used during the first measure-
ments. The beam is coming from the left. At the front-left side is the PE
shielding for beam neutrons with the two plastic veto detectors. At the center
behind the PE shielding is the BRIKEN neutron detector. Also visible is the
dewar of one CLOVER detector inserted in the neutron detector PE moderator.
At the right-back side of the figure is visible the structure supporting the AIDA
front-end electronics. The electronics and DACQ for BRIKEN is located below
the detector.

2.3. Data acquisition and sorting

Both the AIDA detector and the BigRIPS spectrometer have
their proprietary data acquisition systems (DACQ).
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For the BRIKEN neutron counter we used the self-triggered
Gasific DACQ developed at IFIC (Valencia) [26]. An upgrade245

was needed in order to handle the large number of electronic
channels. The new system uses two VME crates to accom-
modate seven SIS3316 and seven SIS3302 sampling digitizers
from Struck [27]. The SIS3316 features 16 digitizer channels,
with 14 bits and a maximum sampling rate of 250 MS/s, while250

the SIS3302 has 8 digitizers channels with 16 bits and a max-
imum 100 MS/s sampling rate. For each channel amplitude
and time information are registered for signals above a spec-
ified threshold. A common clock distributor SIS3820 is used
to synchronize the sampling in all the modules. The clock fre-255

quency was set to 50 MHz. It is also possible to run some of
the digitizers at a multiple of that frequency using a special fea-
ture of the firmware, which is an advantage when combining
fast and slow detectors. The Gasific DACQ also handles the
electronic pulses from the CLOVER detectors and other ancil-260

lary detectors such as the F11 plastic detector, the AIDA plastic
detector, the VETO plastic detectors and the Si ∆E detector.
It was also used to acquire the fast signals from the YSO de-
tector at 250 MS/s, using the upscaling of the sampling rate
feature in the DACQ. The signals from the fast plastic detectors265

were shaped before entering the digitizer. The digitized signals
are processed on-board with a fast trapezoidal filter providing
noise discrimination and timing information. Accepted signals
are timestamped and processed with a trapezoidal filter with
compensation for the preamplifier decay constant to obtain the270

amplitude (energy) information. The parameters of both digital
filters are optimized for every detector type. Parameter setting,
acquisition control and on-line data surveillance is performed
by Gasific.

To perform a complete data analysis it is necessary to com-275

bine the information from the three independent DACQs: Bi-
gRIPS, AIDA and BRIKEN. This is done on the basis of the
absolute time-stamps, thanks to the use of a common synchro-
nization signal distributed to all three systems. Since maintain-
ing the synchronization is crucial for the success of the mea-280

surement, we developed an on-line monitoring program that pe-
riodically spies on the timestamps on the three data streams and
checks that the events are synchronized.

We developed an efficient scheme for data processing which
gives us the possibility of performing a detailed off-line analy-285

sis with information from the three systems within a few hours
(near-line analysis). This allows us to asses the progress of the
measurement and to detect experimental issues that need cor-
rective action. The scheme is shown in Fig. 6. A new run is
started every hour and the data from the previous run is copied290

to a dedicated server. The raw data from every detector system
are then processed with a specific sorting program which gen-
erates a ROOT TTree [28] file from each data stream. These
TTrees contain for each event type the necessary information.
The minimum information required, apart from the time-stamp,295

consists of: 1) BigRIPS: the Z and A/Q of each ion, 2) AIDA:
the X, Y, Z position and the energy E of each ion or β signal,
and 3) BRIKEN: a detector identifier and the energy E of each
signal.

To combine the information of the three TTrees in a single300

TTree a Merger software program has been developed. The
program uses C++ containers to efficiently merge and order the
data by time. It can also associate ROOT vectors with each out-
put event, containing presorted time ordered data of different
event types. This boosts the construction of time correlations in305

the off-line analysis. For example, each β event can have a vec-
tor of implant events and a vector of neutron events occurring
within specified time ranges around the β event.

Synchronization signal

BRIKEN
DAQ DAQ DAQ

AIDA BigRIPS

BRIKEN
sort sort

AIDA BigRIPS

sort

Merger

Raw data Raw data Raw data

TTree TTree TTree

TTree

Hard disk

Figure 6: Diagram of the process for data merging. See text for details.

2.4. Detector performance
Figure 7 shows the energy spectrum registered in the 3He310

tubes during one run with beam. The shape of the tube response
to neutrons, represented by the shadowed area, is the sum of all
tube dependent responses. The characteristic full absorption
peak at 764 keV serves to calibrate in energy all the tubes at the
beginning of the run. In general the gain of the tubes is very sta-315

ble during the measurement, with occasional minor jumps for
some of them that do not even require a gain correction. The
resolution and the tail produced by the wall effect determine the
range of signals identified as neutrons: 175 keV - 850 keV. The
data represented in the spectrum of Fig. 7 was taken with a very320

low acquisition threshold. The peak observed below 30 keV is
dominated by electronic noise. Above 30 keV another compo-
nent is seen, that we call γ-like. We associate this component
with radiation induced by the beam on different material ele-
ments in its path close to the neutron detector. It extends well325

into the neutron signal range, thereby contributing to the acci-
dental neutron background. See the discussion related to Fig. 9
below. We found that the LND tubes are less sensitive than GE
tubes to this background contribution which otherwise shows a
radial intensity profile decreasing with distance from the beam330

axis.
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Figure 7: Distribution of energies registered in the 3He tubes of the BRIKEN
neutron counter. The spectrum contains the sum of all 3He tube signals in one
run. The shaded area represents the range of signals accepted as valid neutron
signals.

The neutron energy moderation process plus the time needed
for a thermalized neutron to be absorbed in a 3He tube introduce
a considerable delay between neutron production and its detec-
tion. Figure 8 shows the time distribution between neutron sig-335

nals in the whole BRIKEN detector and signals identified as β
particles in AIDA. The tail of the distribution shows more than
one exponential component but is essentially contained within
the interval of 200 µs (99.6%). Compared with other neutron
counters of the same kind (see for example Ref. [14]) this dis-340

tribution is rather short. This is a consequence of the close pack-
ing of tubes in our arrangement. Based on the moderation plus
capture time spectrum we decided to use a β-neutron coinci-
dence time window of ∆βn = 200 µs to correlate neutrons with
decays. Shorter windows could be used to reduce the ratio of345

accidentally correlated neutrons, represented by the flat back-
ground in Fig. 8, at the price of reducing the neutron detection
efficiency.
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Figure 8: Distribution of time differences between neutron signals in BRIKEN
and β signals in AIDA (t = tn−tβ) showing the neutron moderation plus capture
time distribution. The flat contribution represented with a dashed line corre-
sponds to accidental correlations.

The long coincidence window of 200 µs would introduce un-
necessary common dead-time in a triggered event based DACQ.350

This is the main reason to use our DACQ where every indi-
vidual channel runs in self-triggered mode. We determine the
life-time for every channel as the ratio of counts in the pulser
peak appearing in the 3He energy spectrum (located outside the
range shown in Fig. 7) to the pulser counts registered in an in-355

dependent channel where the pulser signals are directly con-
nected. In general we observe a very small dead-time. For
example during a measurement with a 252Cf source the total
rate in BRIKEN was 15730 cps, including noise. The rate per
tube varies strongly depending on the position of the tube. The360

highest channel rate amounted to 255 cps and the lowest to
11 cps. The measured channel dead-time fractions were 0.40%
and 0.01% respectively. These numbers agree well with the es-
timation for a non-paralyzable system using the channel trigger
gate length set via software. The global dead-time is 0.36%,365

obtained by weighting the channel dead-times with their rela-
tive contribution to the total number of counts. In comparison,
an event-based DACQ with a 200 µs gate will have a dead-time
of 76% at a rate of 15.7 kcps. During the experimental runs the
rate in BRIKEN was never higher than a few hundred counts-370

per-second thus the acquisition dead-time corrections are neg-
ligible (< 0.1%).

One of the issues encountered during the commissioning run
was the large rate of beam induced neutrons, dominating the
neutron background in BRIKEN. This came as no surprise since375

in a previous experiment [29] with the BELEN neutron detec-
tor at the GSI Fragment Separator (FRS) we observed in some
cases more than 250 neutrons/s. The large background rate
is a consequence of the high energy of the radioactive beam.
We found the neutron rate at BigRIPS to be sensitive to the380

spectrometer setting and to the amount of material in the beam
path, in particular close to the detector. Whenever possible we
tried to move the material away from the experimental area.
For example reducing the secondary beam energy in the early
stages of the spectrometer allows us to reduce the thickness of385

the variable degrader controlling the implantation. In spite of
these measures the observed rate is still large. During the com-
missioning run we measured up to 200 neutrons/s and in later
experiments up to 160 neutrons/s. For comparison the rate in-
duced by the natural background is 0.4 neutrons/s. This quite390

low rate is a consequence of the location of the experimental
area, around 20 m underground.

We observed that a large fraction of background neutrons is
time correlated with the signals of ions passing through the F11
plastic. Figure 9 shows the correlation time distribution, where395

the characteristic neutron moderation curve is seen. When com-
paring this figure with Fig. 8 two differences can be seen: the
spike at t = 0 and the longer tail of the distribution. The spike
is due to γ-like signals within the neutron signal range. This is
demonstrated by the grey filled histogram in Fig. 7 obtained gat-400

ing on signals in the tubes above the noise but below 165 keV.
The longer moderation time observed in Fig. 9, up to 500 µs, is
likely to be the consequence of the high energy and direction of
incidence of beam background neutrons.

We exploited this correlation to reduce the neutron back-405
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ground effect by imposing off-line a veto condition whenever
a neutron is preceded a short time before by an ion signal in
the F11 plastic. This veto condition introduces an analysis
dead-time that is proportional to the rate in the F11 plastic.
During the commissioning run the rate in the F11 plastic was410

460 cps in average, thus we decided to use a veto time window
of ∆F11n = 200 µs which captures 96.4% of background signals
and gives a veto dead-time of 8.79%.
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Figure 9: Distribution of time differences between signals in BRIKEN 3He
tubes identified as valid neutron signals (see Fig. 7) and F11 plastic signals
(t = tn − tF11), represented as the unfilled histogram (black line). The grey
filled histogram represents the time difference for γ-like signals in BRIKEN
3He tubes selected in the energy interval [30 keV, 165 keV].

We also observed that the beam-induced neutron background
has a large multiplicity Md (number of tubes firing). This can415

be a limitation for the measurement of multiple neutron emis-
sion probabilities. Figure 10 shows the observed multiplicity
distribution of neutrons coming within ∆βn after a β signal dur-
ing the commissioning run (black continuous line). It should
be noted that in this run no multiple neutron emitters were pro-420

duced. The figure also shows the multiplicity histogram ob-
tained when the coincidence window is set before the β signal,
representing the accidentally correlated neutrons (red dashed
line). In this distribution the high multiplicity of background
neutrons is clearly seen: Md = 2 and 3 are 30% and 16% re-425

spectively of Md = 1. When the F11 plastic veto condition
is applied a strong reduction of the higher multiplicities is ob-
tained as observed in Fig. 10 (dotted blue line). The reduction
factor is ∼ 2 for Md = 1, ∼ 30 for Md = 2, and ∼ 70 for
Md = 3, demonstrating the usefulness of the veto. A similar430

veto condition using the AIDA plastic detector can be added as
well. This will reduce the neutron background contribution as-
sociated with light particles in the beam that go through AIDA.
Light particles remain undetected in the F11 plastic because of
the small thickness of this detector. For the A ∼ 80 run during435

May-June 2017 the addition of the AIDA plastic veto condi-
tion yields a 20% further reduction of the background. In later
experiments with heavier beams the impact is larger. During
the commissioning run the AIDA plastic veto condition had no
significant impact. Likewise we found no significant reduction440

of the background vetoing with signals from the VETO plastic

detectors attached to the PE shielding.
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Figure 10: Number of neutrons detected in BRIKEN within a time correlation
window of ∆tβn = 200µs with respect to β signals detected in AIDA. The black
continuous line represent the multiplicity distribution of neutrons arriving after
β signals. The dotted blue line is the analogous distribution including the veto
condition that no signal was detected in the F11 plastic detector in the interval
of ∆F11n = 200 µs before the neutron signal. The dashed red line represents the
multiplicity of neutrons arriving within ∆tβn = 200µs before the β signal, i.e.
accidental coincidences with background neutrons.

The remaining background contributions must be corrected
in the data analysis procedure.

3. Analysis methodology for the extraction of Pxn and T1/2445

The main goal of the analysis of BRIKEN data is to extract
accurately the neutron emission probability and half-life char-
acterizing the decay of the implanted nuclei. Actually both
quantities come from the same analysis procedure, although
sometimes T1/2 is already known from previous measurements450

with sufficient accuracy and only Pxn needs to be determined.
This is a favorable situation because it reduces the uncertainty
of the result.

To extract Pxn we need to quantify, for a given implanted nu-
cleus, the number of β decays followed by the emission of x455

neutrons and compare it with the total number of decays. Since
we do not know when an implanted ion is going to decay, we
can only associate decays with implants statistically by con-
structing spatial and temporal correlations. Thus for each iden-
tified implanted ion we construct the histogram hiβ(t) of time460

differences t = tβ − tion with all β events occurring within the
same spatial location and within a specified time range. The
truly correlated decays will stand out from a flat background of
uncorrelated decays. To assess the probability of β1n decays we
need an additional histogram hiβ1n(t) similar to the previous one465

but adding the condition that one neutron, and only one, was
detected after the β within the moderation-plus-capture time
(∆tβn = 200µs). For β2n decays we introduce another histogram
hiβ2n(t) with the condition that two neutrons are detected within
∆tβn after the β particle. And similarly for any other βxn decay.470

However, these histograms contain not only the counts from
parent decays but also from all descendants, in the case of hiβ(t),
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from descendants in the decay chain that are β1n emitters in the
case of hiβ1n(t), and so forth. Thus to disentangle the parent and
descendant contributions we must fit the histograms using the475

appropriate solution of the Bateman equations which describe
the time evolution of all activities. We use the generic form of
the solution proposed in [30] which in our case simplifies to:

Nk(t) = N1

k−1∏
i=1

(bi,i+1λi) ×


k∑

i=1

e−λit

k∏
j=1,i

(λ j − λi)


(1)

Nk(t) is the number of k-type nuclei in a given decay path at
time t, N1 = N1(t = 0) is the initial number of implanted parent480

nuclei, and λ = ln 2/T1/2 is the decay constant. The branching
ratio bi,i+1 from nucleus i to nucleus i + 1 in the decay chain
defines the decay path. In general these branchings are just the
Pi

xn with x = 0, 1, 2, ... . In the presence of isomers with suffi-
ciently long half-life that de-excite with a certain probability by485

internal transition (IT), the corresponding decay path must be
included also. A typical decay network with various branching
points is represented in Fig. 11.
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0.945 s

86Se
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25.2%
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Figure 11: Figure representing the various decay paths for the disintegration of
86Ge. For each nucleus the half-life is indicated. The branchings indicate the
P1n values. Both numbers are taken from standard databases [32].

Obviously the fit function must also include the β and neutron
detection efficiencies. As discussed in [26] both efficiencies are490

energy dependent. The β efficiency depends on the end-point
energy, εβ(Qβ − Ex), and the neutron efficiency depends on the
neutron energy, εn(En). For the implant-β time histogram hiβ(t)
the fit function takes the form:

fiβ(t) =
∑
k∈β

ε̄k
βλkNk(t) (2)

Here the summation runs over the parent and all decay de-495

scendants. Since several decay paths can run through a given
nucleus k we must keep proper accounting of the inventory
when computing Nk(t) using Eq. 1. The β detection efficiency
for the k nucleus is represented by ε̄k

β. The bar symbol em-
phasizes that it is obtained as a weighted average with the β-500

intensity distribution Iβ(Ex) expressed as (dropping the index k
for clarity):

ε̄β =

∫ Qβ

0 Iβ(Ex)εβ(Qβ − Ex)dEx∫ Qβ

0 Iβ(Ex)dEx

(3)

Since Qβ and Iβ(Ex) vary from one nucleus to another, the
average detection efficiency is nucleus dependent as indicated
in Eq. 2.505

For the hiβ1n(t) histogram the fit function takes the form:

fβ1n(t) =
∑

k∈β1n

ε̄k
β1nε̄

k
1nPk

1nλkNk(t) (4)

Here the summation runs over the parent and all descendants
that are β1n emitters. The β efficiency in the β1n channel is av-
eraged in the excitation energy range [S 1n,Qβ] and is weighted
by the β intensity leading to 1n emission Iβ1n(Ex), thus it is dif-510

ferent from ε̄β for the same nucleus:

ε̄β1n =

∫ Qβ

S 1n
Iβ1n(Ex)εβ(Qβ − Ex)dEx∫ Qβ

S 1n
Iβ1n(Ex)dEx

(5)

The average neutron efficiency is weighted by the β1n neu-
tron energy spectrum I1n(En):

ε̄1n =

∫ Qβ1n

0 I1n(En)εn(En)dEn∫ Qβ1n

0 I1n(En)dEn

(6)

For the hiβ2n(t) histogram the fit function takes the form:

fβ2n(t) =
∑

k∈β2n

ε̄k
β2n(ε̄k

2n)2Pk
2nλkNk(t) (7)

The summation runs over the parent and all descendants that515

are β2n emitters, and the average β and neutron detection effi-
ciencies for the β2n channel take the form:

ε̄β2n =

∫ Qβ

S 2n
Iβ2n(Ex)εβ(Qβ − Ex)dEx∫ Qβ

S 2n
Iβ2n(Ex)dEx

(8)

ε̄2n =

∫ Qβ2n

0 I2n(En)εn(En)dEn∫ Qβ2n

0 I2n(En)dEn

(9)

Note that ε̄2n is the efficiency for detection of one neutron
from the β2n channel. For simplicity of notation in Eq. 7 we
assume that ε̄2n is the same for the two neutrons emitted, i.e.520

they have the same neutron intensity distribution.
From the definitions above it is clear that ε̄β2n , ε̄β1n , ε̄β

and that ε̄2n , ε̄1n. The formulae can be extended easily to β3n,
β4n, ... decays.
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The fact that all average β and neutron efficiencies are in525

principle different represents a challenge when extracting Pxn

and T1/2 from the fit. There is no clear way to determine these
efficiencies for most of the decays, since the β intensity dis-
tributions and neutron energy spectra are not known. In some
cases there are general arguments, related to the size of the de-530

cay windows and expected shape of the intensity distributions,
that allow us to assume that all β efficiencies are equal and/or
all neutron efficiencies are equal. In this situation ε̄β factors out
and only ε̄n is needed to perform the fit. However this assump-
tion can introduce systematic errors that need to be studied and535

quantified. Examples of this will be presented later.
One can see from the form of Eq. 2, 4, and 7, that the parent

decay half-life intervenes in the shape of the three histograms
hiβ(t), hiβ1n(t) and hiβ2n(t). The same is true for P1n and P2n

which appear explicitly in the last two equations, but implic-540

itly in all three through the parent decay branchings (b1,2, see
Eq. 1) that determine the weight of the respective descendant
decays. The best way to take into account these correlations
is to perform a simultaneous fit to all three histograms, where
the unknown P1n, P2n, ... and T1/2 are the parameters of the545

fit. An additional fit parameter representing the normalization
is always needed. This is N1, the initial number of implanted
parent nuclei. However, before the fit can be performed we
must take into account various background contributions to the
experimental histograms, as explained in the next Section.550

4. Background correction

A number of background sources affect the experimental his-
tograms hiβ(t) and hiβxn(t). Signals identified as β signals in
AIDA which are not related to the decay of the implanted nu-
cleus contribute to the accidental β background. It affects all555

histograms and has a flat time distribution. This uncorrelated β
background comes from: 1) β particles belonging to the decay
chain of other nuclei implanted in the same correlation area, 2)
light particles that pass through the detector and leave an en-
ergy similar to β particles, 3) detector noise. This background560

component imposes a limit on the minimum detectable activ-
ity and can be reduced by optimizing the implant-β correlation
area, vetoing the signals correlated with the AIDA plastic, and
reducing noise and optimizing thresholds in AIDA.

The best way to determine this background component is to:565

1) construct backwards in time implant-β correlations (t < 0),
where only the uncorrelated β particles contribute, 2) fit it with
an appropriate function, and 3) extrapolate to positive times.
An example of this is shown in Fig. 12 showing the hiβ(t) his-
togram for 83Ga in the time range [−10 s,+10 s]. As can be570

seen, the background time distribution is not constant for t < 0
and has a small positive slope . This effect could be traced back
to accidental beam interruptions during a run, when the β rate
decreases. Ions implanted less than 10 s (in the example) after
a beam interruption will see fewer backward in time β particles575

but progressively more until it reaches the 10 s limit. The net
effect is the increasing background rate for increasing (nega-
tive) times. A similar effect will occur for ions implanted less
than 10 s before a beam interruption leading to an identical but

negative slope for t > 0. We verified that removing from the580

time correlation the data coming up to 10 s before and after a
beam interruption the uncorrelated background becomes con-
stant. During the commissioning run unwanted interruptions
were very frequent and this procedure would reduce the statis-
tics by a factor 5. Using MC simulations we determined that the585

slope of the background depends on the different signal rates
and the frequency and length of interruptions. The condition
for a symmetrical background around t = 0 is that on average
the radioactive beam intensity is constant before and after the
interruptions. We verified that during the commissioning run590

this was the case within less than 1%, thus we assume a sym-
metrical background in our analysis (see Fig. 12). We observe
that in most of the cases a linear function provides a good re-
production of the uncorrelated β background. On occasions an
exponential function reproduces better the shape. In either case595

they define the correction histograms hiuβ(t) and hiuβxn(t) .
In the case of the hiβ(t) histogram this is the only background

contribution thus the relation of the measured histogram with
the unperturbed time distribution fiβ(t) (see Eq. 2) is given by:

hiβ(t) = fiβ(t) + hiuβ(t) (10)
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Figure 12: Zoom on the implant-β time correlation histogram hiβ(t), t = tβ−tion,
for 83Ga in the time range from -10 s to +10 s. The background is fitted with a
linear function (red line) for t < 0 and symmetrically extrapolated to t > 0.

Another important source of background comes from neu-600

trons that are accidentally correlated with β particles within the
time window for β-neutron correlation ∆tβn. This only affects
the hiβxn(t) histograms. Neutron signals that can be accidentally
correlated come from: 1) neutrons emitted by other implanted
nuclei, 2) beam induced neutrons, 3) ambient background neu-605

trons, and 4) detector noise, including γ-like signals in 3He
tubes. This background component affects the minimum de-
tectable βxn activity and can be minimized with proper detec-
tor shielding, discrimination of beam induced neutron signals
and detector noise reduction. A characteristic of this type of610

background is that it follows the time distribution of implant-β
correlations thus having a time structure. This has a direct im-
pact in the extraction of Pxn and T1/2 from the fit and it is crucial
to have an accurate method of background correction.
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We introduce here a new method of correction for accidental615

β-neutron background that estimates accurately its contribution
directly from the data. Figures 13 and 14 show the relevant
histograms for the discussion, in the example of 83Ga decay.
We use in this case the data taken during the May-June 2017
run which has much higher statistics (5 × 106 implanted ions)620

to demonstrate the results.
The method is based on the use of backwards in time β-

neutron correlations to determine the number of accidental neu-
trons correlated with β particles. The idea is that the number of
accidental neutrons coming within ∆tβn after the β is on aver-625

age the same as the number of neutrons coming within ∆tβn

before the β, all of which are of necessity accidentals. The
only assumption here is that the neutron background rate is not
changing, on average, over a period of few hundreds of µs. We
construct a new implant-β time correlation histogram with the630

condition that one neutron arrives within ∆tβn before the β. This
histogram, that we designate hiβ1nb(t) is represented in Fig. 13
in green. Notice that the shape of this histogram is identical
to the scaled hiβ(t) histogram represented in black in the figure.
The scaling factor r1:635

r1 =

∫ +10s
−10s hiβ1nb(t)dt∫ +10s
−10s hiβ(t)dt

(11)

is the probability of having one-accidental-neutron per de-
tected β, determined with great precision because we use the
full statistics of the histograms. In the present example r1 =

0.013173(13). The value of r1 changes by a few percent from
one nucleus to another due to changes in the relative back-640

ground conditions. For example a nucleus with high implan-
tation rate and large Pn sees less background than a nucleus
with low implantation rate and small Pn.

We also construct hiβ2nb(t), the implant-β time correlation
histogram with the condition that two neutrons are coming645

within ∆tβn before the β. This is shown in green in Fig. 14 and
as before its shape is matched by the scaled hiβ(t) histogram (in
black). The scaling factor r2:

r2 =

∫ +10s
−10s hiβ2nb(t)dt∫ +10s
−10s hiβ(t)dt

(12)

represents the probability of having two-accidental-neutrons
per detected β. In the present example r2 = 0.0005056(25), 25650

times smaller than r1. A similar procedure can be applied for
higher accidental neutron multiplicities. The red-dashed his-
togram in Fig. 10, representing the multiplicity of neutrons ac-
cidentally correlated with a β particle, give us information about
the value of rn for n > 2. The total probability of accidental655

neutrons per detected β is r = r1 + r2 + ... .
Let us consider the case of decays followed by one-neutron

emission. The measured histogram hiβ1n(t) is represented in
blue in Fig. 13. This histogram has to be corrected of back-
ground contributions to obtain the unperturbed time distribu-660

tion represented by the function fiβ1n(t) defined in Eq. 4. Ac-
cidental neutron coincidences have two effects on this distri-
bution. One effect is a loss of counts whenever one or more

background neutrons come accidentally within ∆tβn after the β
in addition to the truly correlated neutron. The loss is propor-665

tional to r the total probability of accidental neutrons per de-
tected β. The net effect is a scaling down of the distribution,
of the form (1 − r) fiβ1n(t). The other effect is the appearance
of spurious counts in the histogram when one accidental neu-
tron correlates with β particles that do not see correlations with670

decay neutrons. The latter have a time distribution that can be
obtained as the difference between the distribution of all de-
tected β events, fiβ(t), and the distribution of β events where
one true neutron was detected, fiβ1n(t). Scaling this distribution
by r1, the probability of one-accidental-neutron per β, gives the675

contribution r1( fiβ(t)− fiβ1n(t)). The measured histogram is then
the sum of both terms plus the uncorrelated background contri-
bution hiuβ1n(t). After some rearrangement it gives:

hiβ1n(t) = (1 − r − r1) fiβ1n(t) + r1 fiβ(t) + hiuβ1n(t) (13)

To visualize the size of the corrections it is useful to calculate
the histogram hcorr

iβ1n(t) = (hiβ1n(t) − r1hiβ(t))/(1 − r − r1) that is680

represented in red in Fig. 13. Note that both hiβ1n(t) and hiβ(t)
include their respective uncorrelated backgrounds. As can be
seen in Fig. 13 the correction is small in this case but it would be
important if the P1n value is small. An example will be shown
later.685
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Figure 13: Different implant-β time correlation histograms for 83Ga. Blue:
uncorrected implant-β-1n time distribution hiβ1n(t); green: implant-β time dis-
tribution of β particles in accidental coincidence with one background neu-
tron hiβ1nb(t); black: scaled implant-β time distribution r1hiβ(t); red: corrected
implant-β-1n time distribution hcorr

iβ1n(t). See text for details.

Let us turn now to the case of two-neutron emission. The
measured hiβ2n(t) histogram is represented in blue in Fig. 14.
This histogram has to be corrected of background contributions
to obtain the unperturbed time distribution represented by the
function fiβ2n(t) defined in Eq. 7. The effect of accidental coin-690

cidences with background neutrons in this histogram is similar
to the one explained above: loss of true counts and appearance
of spurious counts. In addition one has to modify the correc-
tions to the hiβ1n(t) histogram (Eq. 13) to take into account the
contribution of the β2n decay channel. In Appendix A we ex-695

plain in detail how to obtain the different correction terms. Here

10



we just give the result expressed as the relation between the
measured histograms hiβ1n(t) and hiβ2n(t) and the unperturbed
time distributions fiβ(t), fiβ1n(t) and fiβ2n(t):

hiβ1n(t) =(1 − r − r1) fiβ1n(t) + r1 fiβ(t)
+ (2re(1 − r − r1) − r1) fiβ2n(t) + hiuβ1n(t)

(14)

hiβ2n(t) =(1 − r − r2 + 2re(r1 − r2)) fiβ2n(t)
+ (r1 − r2) fiβ1n(t) + r2 fiβ(t) + hiuβ2n(t)

(15)

where re = (1 − ε̄2n)/ε̄2n.700

The computation of the background corrected implant-β-1n
and implant-β-2n histograms from the measured histograms
gets more complicated now because of the interdependence of
the corrections. We give in Appendix A the appropriate formu-
las. In the present example, the corrected histogram hcorr

iβ2n(t) is705

represented in red in Fig. 14. As can be observed the peak in the
uncorrected time distribution (blue) disappears in the corrected
time distribution, which is completely flat. This agrees with the
fact that 83Ga must have a extremely small P2n due to the small
Qβ2n = 0.89 MeV. It confirms the accuracy of the correction710

method and demonstrates the importance of accidental neutron
background correction for determining small P2n values.
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Figure 14: Different implant-β time correlation histograms for 83Ga. Blue:
uncorrected implant-β-2n time distribution hiβ2n(t); green: implant-β time dis-
tribution of β particles in accidental coincidence with two background neu-
trons hiβ2nb(t); black: scaled implant-β time distribution r2hiβ(t); red: corrected
implant-β-2n time distribution hcorr

iβ2n(t). See text for details.

Similar formulas for β3n emitters are given in Appendix A.

5. Selected results

We present in this section details of the analysis for a few715

isotopes in order to illustrate the procedure and the quality of
results.

The data was acquired during the commissioning run over 10
effective hours of measurement at a primary beam intensity of
20 pnA. In the sort of AIDA data, β events are treated by defin-720

ing clusters of consecutive strips firing above the noise thresh-
old (strip dependent) in both X and Y directions. This takes

into account the fact that β particles can have a long range in
Si. A β pixel is determined by the energy weighted centroid of
the cluster of strips with the condition that X and Y energies725

are similar. Implantation events have a small strip multiplicity
(one or two strips) and are defined by the last layer (DSSD)
firing the low gain electronic branch. We consider only ion-β
correlation events when they happen in the same layer (Z posi-
tion) and the difference of X and Y centroid positions between730

β and ion is less than three strips (defining a correlation area of
3.3 mm × 3.3 mm).

We discovered during the run in May-June 2017 a problem
related to the design of the AIDA adaptor PCB cards that serve
to connect the flat cables coming from the Si DSSD . The effect735

was a transient induced by implantation events in the high gain
electronics which is interpreted as a β event. The effect lasted
up to a few tens of ms and appears as a spurious implant-β time
correlation extending up to 30-40 ms. These background sig-
nals can be effectively eliminated by neglecting the first 50 ms740

in the fit of the time correlated histograms. In the A ∼ 80 runs
this is not an issue because the half-lives are relatively long. Af-
ter identification of the problem the coupling cards were mod-
ified and the effect eliminated as verified during the October-
November 2017 run.745

5.1. Fitting procedure
We construct the time correlation histograms hiβ(t) and

hiβ1n(t) for all implanted ions that are identified. We choose
a time window from -10 s to +10 s that is appropriate for all the
cases analyzed. The binning of the histograms for each nucleus750

is chosen balancing the need to have enough points to determine
the activity evolution and minimize the statistical fluctuation in
the bin counts.

A fitting subroutine was written using ROOT::Fit classes
[28]. The inputs to the program are the measured time correla-755

tion histograms, the half-life and neutron emission probabilities
of all nuclei involved and the corresponding β and neutron effi-
ciencies. All parameters have an associated uncertainty and can
be fixed during the fit. The program automatically reconstructs
the decay network based on the nuclei and Pxn information pro-760

vided.
For the fit we do not subtract the different background contri-

butions from the measured histograms but rather include these
contributions in the fit function. See Appendix A. This is the
proper way to handle the corrections in view of the use of Max-765

imum Likelihood estimators. Histogram subtraction destroys
the Poisson character of bin counts leading eventually to neg-
ative counts for low statistics. In general we use the Binned
Maximum Likelihood (BML) algorithm to fit the histograms,
except when the very low statistics suggest the use of the Un-770

binned Maximum Likelihood (UML). In this case the event data
are provided in list mode. The uncorrelated β-ion background
is obtained from a fit to the negative time range for each of the
hiβ(t) and hiβxn(t) histograms taking into account the effect of
the correlated neutron background correction histograms (see775

Appendix A). The fit to the positive time range skips the first
few bins in order to exclude the initial 50 ms range where the
ion induced β background appears.
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To evaluate the systematic uncertainty due to the parame-
ters fixed during the fit (half-lives, neutron branchings, back-780

grounds, efficiencies) we use a Monte Carlo approach. For any
chosen subset of parameters we define a multivariate normal
distribution, using the adopted value of each parameter as the
mean and the square of the quoted uncertainty as the variance.
In general we assume that different parameters are uncorrelated785

(diagonal covariance matrix). The multivariate distribution is
randomly sampled and the fit performed. The resulting fit pa-
rameters (P1n, T1/2, ...) are histogrammed and at the end the
standard deviation of the sample distribution (eventually asym-
metric) is evaluated and quoted as the systematic uncertainty.790

For the fit we need to define β and neutron efficiencies.
We assume that the nominal value of the neutron efficiency is
ε̄n = 66.8(20)% as discussed in Section 2.2. This efficiency
has to be renormalized in order to take into account the neutron
count loss because of the finite size of the β-neutron correlation795

window (0.43%), and the dead-time introduced in the analysis
by the neutron veto from the F11 plastic detector (8.79%). This
gives a value of 60.7(18)% for the effective neutron efficiency.
This efficiency would have to be modified for decays with a
particular hard neutron spectrum. The influence of β efficien-800

cies will be discussed in the next subsection.

5.2. Effect of β efficiencies

The continuum nature of the β spectrum together with the
unavoidable minimum electronic thresholds introduce a β end-
point energy dependence in the β detection efficiency [26]. In805

the case of an implantation-decay detector like AIDA the en-
ergy dependence is further complicated with a dependence on
the implantation depth and with the method of reconstructing β
events. To illustrate the dependence with threshold and implan-
tation depth we show in Fig. 15 the result of Geant4 simulations810

using the AIDA Si DSSD geometry. This efficiency does not in-
clude the effect of event reconstruction and the absolute values
are not representative of the actual β efficiencies.

As can be observed in Fig. 15 there is a fast drop in the ef-
ficiency for end-point energies below 1 − 2 MeV. When the β815

particle is emitted from the middle of the DSSD the efficiency
is quite large if the threshold is low (below about 150 keV). In
this case increasing the threshold (250 keV in the example) has
a substantial effect, with the efficiency dropping for increasing
end-point energies. When the implantation occurs close to one820

of the DSSD surfaces, half of the β particles have little chance
of depositing enough energy and the efficiency drops. The ef-
fect of a threshold increase is smaller in this case. Because of
the energy spread of implanted ions the implantation depth ef-
fect is partially smeared out. As explained in Section 3 this825

energy dependence can introduce differences in average effi-
ciencies ε̄β for different nuclei and decay branches, depending
on the β intensity distribution, which leads to systematic errors
in the results of the fit. Note that the systematic effect is due to
the relative differences and not to the absolute efficiency values.830

It is not easy to determine experimentally the efficiency for
every decay mode contributing significantly to the fit. One pos-
sibility is to use the intensity of decay γ-rays observed in the
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Figure 15: Simulated β efficiency in one of AIDA DSSDs as a function of β
endpoint energy. Circles: implantation at the center. Triangles: implantation
close to the surface. Continuous line: Single strip lower energy threshold of
150 keV. Dashed line: Single strip lower energy threshold of 250 keV threshold.

CLOVER detectors to obtain information on the average β ef-
ficiency. This requires the comparison of β-gated with ungated835

γ ray spectra [31], but it is in practice difficult to apply because
of the large background and the limited statistics. Another ap-
proach is to calculate a realistic β efficiency curve from Monte
Carlo simulated data and use β intensity distributions to com-
pute the average efficiencies (Section 3). Since for most of the840

exotic decays this information is unknown or poorly known,
one must rely on theoretical β-strength distributions to obtain an
estimate. In spite of the uncertainties inherent in this approach
it can give a representative value of the size of the systematic
error. A third approach is to determine the β efficiencies from845

the time correlation data as will be discussed below.
An important consideration is that the end-point energy de-

pendence of εβ decreases as the threshold decreases (it disap-
pears at threshold zero). Therefore minimizing the effective β-
energy threshold in AIDA data is an important requirement to850

minimize this kind of systematic error. One can test the mag-
nitude of the systematic error by analyzing data obtained with
different β thresholds. Such a test is shown in Fig. 16 for a
set of Ni, Cu, Zn and Ga isotopes measured during the com-
missioning run. They span ranges of Qβ = 9.4 − 13 MeV and855

Qβ1n = 3.9 − 8.1 MeV.
The fit to the time correlation histograms hiβ(t) and hiβ1n(t)

used to extract the P1n and β efficiencies shown in Fig. 16, as-
sumes that all ε̄β are equal. In this case the β efficiency factors
out of the fit function (see Eq. 2 and Eq. 4) and can be de-860

termined from the result of the fit. The fit parameters are P1n

and the normalization constant, equal to ε̄βN1. The remain-
ing parameters are kept fixed to the adopted values in stan-
dard databases [32]. Dividing the normalization constant by
N1 determined as the number of identified implanted ions we865

obtain ε̄β. The extracted efficiency is indicative of the effective
β threshold. In the sort with the low threshold the β efficien-
cies vary between 30% and 42%. In the high threshold sort
the efficiency range is 20-26%. The actual thresholds applied
to AIDA β data are strip dependent and vary between 100 keV870
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Figure 16: Ratio of β efficiencies (triangles) and P1n values (circles) obtained
from the analysis of data sorted with two different β energy thresholds in AIDA
(a low and a high threshold).

and 250 keV in the high threshold sort and between 50 keV and
200 keV in the low threshold sort.

Figure 16 shows the ratio of β efficiencies and the ratio of
P1n values between the low threshold sort and the high thresh-
old sort. The low threshold increases ε̄β between 54% and 89%875

with respect to the high threshold. The impact on P1n is a re-
duction of all values by factors from 2.5% to 18%. We have not
observed a clear correlation of the reduction factor with the size
of the decay windows Qβ and Qβ1n.

Minimizing the thresholds in the AIDA sort is a challenging880

task because of the large number of channels and the nature
of the noise, which is channel specific and time dependent. A
compromise must be established between lowering the thresh-
old and keeping a reasonable signal-to-noise ratio. For the com-
missioning run we adopt the low threshold sort discussed above885

that should reduce the effect of β efficiency dependence in the
data. The question is whether a residual effect still remains.

As a matter of fact we observe a small but systematic devia-
tion between data and best fits for nuclei with high implantation
statistics during the commissioning run. Figure 17 shows, rel-890

ative values of fit residuals for implant-β time correlation his-
tograms (hiβ(t) − fiβ(t))/ fiβ(t). To show the effect more clearly
the fit region is restricted to implant-β correlation times in the
range [1 s, 10 s]. As can be observed all show a similar pat-
tern: there is a deficit of counts at short correlation times and a895

slight excess at long correlation times. We do not observe this
effect in the fit of the neutron-gated implant-β time correlation
histogram hiβ1n(t). We interpret this result as a consequence of
the difference in β efficiency between the parent nucleus and
descendants. In all cases except 80Zn, this can be related to the900

much larger decay window Qβ of the parent. The case of 80Zn
will be commented on later.

In view of this result we will include in the fit, when neces-
sary, as an additional adjustable parameter the relative β effi-
ciency of selected decay modes in the chain.905

5.3. 82Ga: verification of neutron efficiency
During the commissioning run we accumulated 3.5×105 ions

of 82Ga, a good case to verify the neutron efficiency since the
P1n for this decay is fairly well known. There are three previous

 [s]     
ion

  t
β

t
10 8 6 4 2 0 2 4 6 8 10

re
l.
 d

e
v.

  

0.04
0.03
0.02
0.01

0
0.01
0.02
0.03

Zn
80

 [s]     
ion

  t
β

t
10 8 6 4 2 0 2 4 6 8 10

re
l.
 d

e
v.

  

0.04
0.03
0.02
0.01

0
0.01
0.02

Zn
80

 [s]     
ion

  t
β

t
10 8 6 4 2 0 2 4 6 8 10

re
l.
 d

e
v.

  

0.04
0.03
0.02
0.01

0
0.01
0.02

Zn
79

 [s]     
ion

  t
β

t
10 8 6 4 2 0 2 4 6 8 10

re
l.
 d

e
v.

  
0.04
0.03
0.02
0.01

0
0.01
0.02
0.03

Cu
78

 [s]     
ion

  t
β

t
10 8 6 4 2 0 2 4 6 8 10

re
l.
 d

e
v.

  

0.05
0.04
0.03
0.02
0.01

0
0.01
0.02

Cu
77

Figure 17: Relative deviation between implant-β time correlation data and the
fit function for isotopes with large implantation statistics.

measurements which give consistent values: 21.4(22)% [35],910

19.8(10)% [36], and 22.2(20)% [31]. Their weighted average
gives 20.4(12)%. In addition there are two values with larger
uncertainty that deviate significantly from the other results,
31.1(44)% from [37] and 30(8)% from [38]. The new evalu-
ation of Px and T1/2 for β-delayed neutron emitters fostered by915

the IAEA [39] recommends a higher value of P1n = 22.7(20)%,
obtained by a weighted average of all measurements except the
first one.

82Ga is the sole neutron emitter in its entire decay network.
The one-neutron emission window is Qβ1n = 5.290(3) MeV.920

This value and the values of other decay energy windows in
this paper are taken from the 2016 Atomic Mass Evaluation
[40]. The neutron energy spectrum has not been measured for
this decay but it was for the lighter isotopes 79−81Ga [19]. From
the evolution of the shape one can deduce that most of the neu-925

tron spectrum for 82Ga should be contained within 1 MeV. This
is confirmed by theoretical calculations of the delayed neutron
spectrum, which can be retrieved from the ENDF/B-VII.1 data
base [20]. This spectrum is calculated from β-strength distri-
butions obtained within the QRPA formalism [41] and neutron930

emission rates obtained within the Hauser-Feshbach formalism
[42]. Thus we conclude that the use of the nominal neutron ef-
ficiency ε̄n = 66.8(20)% (Section 2.2) should be appropriate in
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this decay.
Our data and the fits are shown in Fig. 18. There is a large935

difference between the fit and measurement at the first posi-
tive time bin in the hiβ(t) histogram (with 6 × 104 counts it is
outside the range shown). This is caused by the ion-induced β
background. The corresponding histogram bin is not included
in the fit region. The number of accidental one-neutron counts940

per detected β is r1 = 0.006793(29), much smaller than the val-
ues obtained in the May-June 2017 run (see Section 4). This
reflects the different background conditions in the two exper-
iments. In the fit all the decay branches down to stable nu-
clei are followed. The half-life of all descendants is relatively945

well known [32]. The half-life of 82Ga is also well known,
T1/2 = 601(2) ms [39], and was fixed in the fit. Ambiguities
appear in the case of 81Ge with two known β-decaying isomers.
However, both have equal half-life within uncertainties accord-
ing to [43], which minimizes the impact of the respective un-950

known population. Also in the case of 82As two isomers are
known but the decay of the 0+ ground state of 82Ge will popu-
late weakly the (5−) isomer. The case of 81Se, again with two
isomers, poses no problem since it contributes marginally to the
decay activity.955
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Figure 18: Fit to implant-β (bottom panel) and implant-β-1n (top panel) time
correlation histograms for the decay of 82Ga. In both panels the red line rep-
resents the total fit function, the violet line the uncorrelated background and
the blue line the contribution of parent decay. In addition the green line in the
bottom panel represents the daughter contribution, and the light blue line in the
top panel the correlated neutron background contribution. Additional smaller
descendant contributions to the bottom panel are not shown for clarity. The rel-
ative deviation of the data with respect to the fit is shown in lower part of each
panel.

The decay energy window for 82Ga is large, Qβ =

12.484(3) MeV, much larger than the Qβ for other contribut-

ing decays. In particular it is nearly 8 MeV larger than the Qβ

of the daughter 82Ge, the second largest contributor in the decay
chain. Therefore the fit was performed including as a free pa-960

rameter the β efficiency for the parent decay, resulting in a value
of P1n = 19.10(46)%. If we keep all β efficiencies fixed the fit
is poorer (χ2/ν = 1.3 instead of 0.98, see also Fig. 17) and the
result becomes 13% larger P1n = 21.60(30)%. The fitted β effi-
ciency is 84.6(20)%, relative to the efficiency for the remaining965

decay branches, that are kept fixed. This can be interpreted in
the light of the simulations presented in Fig. 15 showing that if
on average the decay proceeds by large decay energies the effi-
ciency can be lower than if it decays with smaller β energies.

The uncertainty on P1n values quoted above is obtained from970

the fit and represents the statistical uncertainty. The system-
atic uncertainty due to the uncertainties in the half-life of the
parent and all descendants was evaluated as 0.16% using the
parameter sampling procedure described before. The uncer-
tainty due to the assumed uncertainty in the neutron efficiency975

amounts to 0.61%. The uncertainty due to the background cor-
rections (correlated and uncorrelated) is evaluated as 0.18%.
The total systematic uncertainty is 0.65%. Combining quadrat-
ically the statistical and systematic uncertainties our result is
P1n = 19.10(80)%. It agrees within uncertainties with the980

weighted average of previous measurements [35, 36, 31] with
the lower P1n values, P1n = 20.4(12)%. The result confirms
also the value of the nominal efficiency used.

5.4. 80Zn: sensitivity limit to small P1n

The importance of a proper correction of accidentally cor-985

related neutron background in the case of weak two-neutron
emitters was demonstrated in Section 4. 80Zn with Qβ1n =

2.828(3) MeV and a small P1n value is a good example of
the importance of background correction for weak one-neutron
emitters. It serves also as a test case to study the sensitivity990

limit of our experiment for P1n determination. There are two
previous measurements of the delayed neutron emission prob-
ability in 80Zn. A rather uncertain value of 1.0(5)% is reported
in [44] and an upper limit, P1n < 1.8%, is reported in [38]. The
new evaluation [39] adopts the value [44].995

One million 80Zn ions were implanted during the commis-
sioning run. In the decay chain [39], 80Ga is a known β-
delayed neutron emitter with a weak neutron branching P1n =

0.846(73)% and 79Ga is an even weaker emitter with P1n =

0.084(29)%. Two isomers are known [45] in 80Ga with T1/2 =1000

1.3(2) s (Jπ = 3(−)) and T1/2 = 1.9(1) s (Jπ = 6(−)), but the
high-spin isomer is only weakly populated in the the decay of
the 80Zn 0+ ground state. The Qβ of 80Zn, 7.575(4) MeV, is ac-
tually smaller than that of the daughter 80Ga, 10.312(4) MeV, at
difference with the remaining cases shown in Fig. 17. Another1005

characteristic of the decay of 80Ga is the sizable population of
a 2+ state at Ex = 659 keV that emits conversion electrons and
of a 0+ state at Ex = 639 keV that can only decay by electron
conversion to the 0+ g.s. (E0 transition) [46]. These low-energy
conversion electrons are easily detected in AIDA increasing the1010

apparent β efficiency for 80Ga decay. Therefore we leave this
efficiency as a free parameter of the fit. The lower panel of
Fig. 19 shows the good quality obtained in the fit to the hiβ(t)
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histogram. The adjusted β efficiency is 15% larger than the effi-
ciency for other decay branches that are kept fixed. This result1015

can be understood as the effect of conversion electrons.

The upper panel of Fig. 19 shows the fit to the implant-β-
1n histogram without correction for the accidental correlated
one-neutron background and the central panel the fit including
the correction. As can be seen this correction represents the1020

largest contribution to the measured histogram. Without cor-
rection the fit to hiβ1n(t) is poor because the correlated back-
ground has the shape of hiβ(t) (see Section 4) and the result-
ing P1n = 2.79(11)% is too large. After correction we obtain
1.36(11)% in agreement with previous results. The systematic1025

uncertainty due to background correction is 0.06%. The one
due to the fixed parameters in the fit (all T1/2 and P1/2 of de-
scendants) is 0.02% and that of the neutron efficiency is 0.04%.
Combining all uncertainties our final result is P1n = 1.36(12)%.
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Figure 19: Fit to implant-β (bottom panel) and implant-β-1n (top an central pan-
els) time correlation histograms for the decay of 80Zn. Top panel: fit without
accidental one-neutron background correction. Central panel: fit with acciden-
tal one-neutron background correction. The same color code as in Fig. 18 is
used for the different contributions to the fit function.

This case shows also that rather accurate P1n values on the1030

order of one percent can be extracted from our data. This state-
ment of course depends on the implantation statistics. We have
tested that analyzing one tenth of the present statistics (105 ions)
one can still obtain a reasonable result of P1n = 1.62(47)%.

5.5. 81Ga: sensitivity limit for small implant statistics1035

The decay window for neutron emission in 81Ga is Qβ1n =

3.836(3) MeV. It is the only neutron emitter in the decay chain
network. There are three previous P1n measurements that agree
well: 12.0(9)% [35], 10.6(8)% [36], and 12.9(8)% [37]. The
new evaluation [39] recommends the value of P1n = 12.5(8)%.1040

The half-life is also well known T1/2 = 1.217(4) s. The num-
ber of implanted ions during the commissioning run was 4400.
Thus this case serves to test the sensitivity limit of our setup
with low statistics.

Figure 20 shows the result of the fit using the nominal neu-1045

tron efficiency and fixing the half-life of descendants to the val-
ues in the ENSDF database [32]. The β efficiencies were kept
fixed during the fit. A total of 190 neutrons stand out from a
background of 820 neutrons. The P1n from the fit is 11.3(23)%.
The systematic uncertainty due to parameters that are kept fixed1050

in the fit is 1.2%. Our result is then P1n = 11.2(26) in agreement
with previous results.
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Figure 20: Fit to implant-β (bottom) and implant-β-1n (top) time correlation
histograms for the decay of 81Ga. The same color code as in Fig. 18 is used for
the different contributions to the fit function.

This demonstrates that with a few thousand ions we are able
to measure P1n values of the order of 5-10% with accuracies in
the order of 25%.1055

6. Conclusion

We have carried out the commissioning of a new setup for the
measurement of decay properties of β-delayed neutron emitters
using radioactive beams at RIKEN. This allowed us to verify
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the performance of the BRIKEN neutron counter under exper-1060

imental conditions. We found that the beam induced neutron
background in the detector is about 2-3 orders of magnitude
larger than the natural neutron background. The background
rate is quite sensitive to the spectrometer setting. Minimiz-
ing the material in the beam path close to the detector helps1065

to reduce the background. We found that another effective way
of reducing the background is to veto neutron signals coming
shortly after any beam particle enters the experimental area.
This reduces the one-neutron background rate by a factor 2-3
and the two-neutron background rate by a factor ∼30. The large1070

background imposes a limit on the minimum measurable P1n

that otherwise depends on the statistics (number of implanted
ions) and the value of P1n itself. We demonstrated that we are
able to determine P1n values of the order of 1% with 105 ions.
We could determine also P1n values of the order of 10% with1075

few thousand implanted ions. For P2n values the situation is
more favorable because of the much higher background reduc-
tion.

Because of the large size of the β-neutron coincidence win-
dow (200 µs) the number of accidental β-neutron correlations is1080

large. This introduces a distortion of the β-implant-neutron time
correlation spectra that severely affects the determination of
small P1n and P2n values. We have introduced a novel method,
based on time-reversed correlations, to determine this distortion
accurately and correct for it.1085

Systematic errors due to the unknown dependence of β and
neutron efficiency on nucleus and decay branch have been dis-
cussed. Although the design of the BRIKEN neutron counter
minimizes the neutron energy dependence of the efficiency, re-
ductions of up to about 10% with respect to the nominal neutron1090

efficiency can be expected for decays with large Qβ1n windows.
The correct efficiency can be calculated from the neutron spec-
trum and simulated efficiencies. In cases where the spectrum
is unknown one can use theoretical estimates to compute the
correction factor. Another possibility, that we are currently in-1095

vestigating, is to use the number of counts per detector ring,
which is sensitive to the neutron energy distribution, to deter-
mine directly the effective average efficiency.

The evaluation of systematic errors due to differences in β
efficiencies is more challenging. As this effect is related to the1100

threshold in the β detector, minimization of the threshold for β
events in the sorting of AIDA data is a requisite for accurate Pxn

determinations. This is a demanding task given the complexity
of this type of detector and the varying conditions in different
experiments. Currently we are actively working to improve the1105

β event reconstruction in AIDA. For the commissioning run we
selected a sort that is a compromise between threshold reduc-
tion and signal-to-noise ratio. We found evidence for a resid-
ual β efficiency effect in the fits to these data. These are in
general cases where the parent decay Qβ is quite large, much1110

larger than the decay energy window for other contributing de-
cay branches. Our approach to solve this issue is to include the
parent decay β efficiency as an adjustable parameter in the fit.
We also studied a case where the β efficiency of the daughter
decay is increased due to the emission of conversion electrons.1115

We presented the result of the analysis for few selected cases

measured in the commissioning run. The results obtained for
other cases will be presented in a forthcoming publication.
They confirm the value of the neutron efficiency for the current
setup. They show also the importance of an accurate correction1120

of the correlated neutron background. In general they confirm
the good performance of the detector setup and the expected
quality of the results from the experiments that have been al-
ready performed or are planned .
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Appendix A.1155

We describe in this Appendix how to obtain background cor-
rection formulas for the analysis of BRIKEN data from β2n
emitters. We calculate the effect of accidental coincidences
with background neutrons on the measured histograms hiβ1n(t)
and hiβ2n(t) that, together with hiβ, are needed to obtain P1n, P2n1160

and T1/2. At the end of the Appendix we give also, without de-
duction, the corresponding formulas for the case of β3n emitters
which can be obtained following a similar line of reasoning.

Let us consider first the hiβ2n(t) histogram. The correspond-
ing unperturbed time distribution is represented by the function1165

fiβ2n(t) defined in Eq. 7. As it was mentioned in Section 4, one
of the effects of accidental coincidences with background neu-
trons is the loss of counts, resulting in a scaling of this distribu-
tion of the form (1 − r) fiβ2n(t), where r is the total probability
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of accidental neutron coincidences per β. In addition to this1170

effect accidental coincidences produce spurious counts in the
histogram that come from three different contributions.

The first contribution comes from β particles that do not see
correlations with decay neutrons but accidentally correlate with
two background neutrons coming within the ∆tβn coincidence1175

window. The probability of accidental correlation with two
bacground neutrons is given by r2, see Eq. 12. The time dis-
tribution of β events that do not see correlations with decay
neutrons can be obtained subtracting from the distribution of
all β events, fiβ(t) (Eq. 2), those events where decay neutrons1180

are detected. For the β1n decay channel this is represented by
fiβ1n(t) (Eq. 4). For the β2n decay channel, two terms appear.
The first term corresponds to events where the two neutrons are
detected and is represented by fiβ2n(t). The second term corre-
sponds to events where only one of the two neutrons is detected.1185

The probability of detecting only one of the two neutrons emit-
ted is given by 2(1 − ε̄2n)ε̄2n, assuming that the neutron detec-
tion efficiency for both neutrons in the β2n channel (Eq. 9) is
equal. Taking into account the dependence of fiβ2n(t) (Eq. 7)
with ε̄2n then 2re fiβ2n(t)), with re = (1− ε̄2n)/ε̄2n, represents the1190

distribution of β2n events where only one neutron is detected.
Taking both terms in consideration, this contribution takes the
form r2( fiβ(t) − fiβ1n(t) − fiβ2n(t) − 2re fiβ2n(t)).

The second contribution comes from events belonging to the
β1n decay channel when in addition to the detection of a de-1195

cay neutron, with time distribution given by fiβ1n(t), a back-
ground neutron accidentally arrives within ∆tβn with probability
r1 (Eq. 11). This results in a term of the form r1 fiβ1n(t).

The third contribution, analogous to the second one, comes
from the β2n channel itself when one of the two neutrons emit-1200

ted scape detection (see above) but a single background neutron
arrives accidentally within ∆tβn with probability r1. This gives
a contribution of the form 2rer1 fiβ1n(t)

The measured histogram is the sum off all these contributions
plus the uncorrelated background hiuβ2n(t) (see Section 4):1205

hiβ2n(t) =(1 − r) fiβ2n(t)
+ r2( fiβ(t) − fiβ1n(t) − fiβ2n(t) − 2re fiβ2n(t))
+ r1( fiβ1n(t) + 2re fiβ2n(t))
+ hiuβ2n(t)

(A.1)

Let us consider now the hiβ1n(t) histogram. In the case of
β2n emitters one needs to modify Eq. 13 describing the rela-
tion between the measured histogram and the unperturbed time
distributions. The term representing the loss of events by ac-
cidental coincidences with background neutrons remains the1210

same, (1 − r) fiβ1n(t). The term representing spurious counts
coming from accidental correlations with single background
neutrons, with probability r1, needs to be modified. As ex-
plained above the time distribution of events that do not see
correlations with decay neutrons must take into account the1215

contributions of the β2n channel. The term takes the form
r1( fiβ(t) − fiβ1n(t) − fiβ2n(t) − 2re fiβ2n(t)). In addition, one needs
to consider a new term contributing to the spurious counts com-
ing from the the β2n channel when only one of the two neu-

trons is detected, represented by the distribution 2re fiβ2n(t), and1220

there is no accidental coincidence with background neutrons,
with a probability 1 − r. Thus this contribution takes the form
2re(1 − r) fiβ2n(t). With these modifications and including the
uncorrelated background contribution hiuβ1n(t), the measured
hiβ1n(t) histogram can be evaluated as1225

hiβ1n(t) =(1 − r) fiβ1n(t)
+ r1( fiβ(t) − fiβ1n(t) − fiβ2n(t) − 2re fiβ2n(t))
+ 2re(1 − r) fiβ2n(t)
+ hiuβ1n(t)

(A.2)

Rearranging terms in Eq. A.1 and Eq. A.2 the relation be-
tween the measured histograms and the unperturbed distribu-
tions can be written down in a compact form:

hiβ(t) − hiuβ(t) = fiβ(t)
hiβ1n(t) − hiuβ1n(t) = a0 fiβ(t) + a1 fiβ1n(t) + a2 fiβ2n(t)
hiβ2n(t) − hiuβ2n(t) = b0 fiβ(t) + b1 fiβ1n(t) + b2 fiβ2n(t)

(A.3)

The coefficients appearing in this formula are given by

a0 = r1

a1 = 1 − r − r1

a2 = 2re(1 − r − r1) − r1

b0 = r2

b1 = r1 − r2

b2 = 1 − r − r2 + 2re(r1 − r2)

(A.4)

If we denote with h′iβ(t), h′iβ1n(t) and h′iβ2n(t), the histograms1230

corrected for the uncorrelated background (h′iβ(t) = hiβ(t) −
hiuβ(t), ...), and substitute fiβ(t) for h′iβ(t) in the two lower rows
of equation A.3, one can solve this system of equations for
fiβ1n(t) and fiβ2n(t):

fiβ1n(t) = d0h′iβ(t) + d1h′iβ1n(t) + d2h′iβ2n(t)

fiβ2n(t) = e0h′iβ(t) + e1h′iβ1n(t) + e2h′iβ2n(t)
(A.5)

with the coefficients given by1235

d0 = −
a0b2 − b0a2

a1b2 − b1a2

d1 =
b2

a1b2 − b1a2

d2 = −
a2

a1b2 − b1a2

e0 = −
b0a1 − a0b1

a1b2 − b1a2

e1 = −
b1

a1b2 − b1a2

e2 =
a1

a1b2 − b1a2

(A.6)
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One can interpret Eq. A.5 as representing the corrected his-
tograms hcorr

iβ1n and hcorr
iβ2n respectively. Alternatively they can be

used to obtain the form of the fit functions for the measured
histograms including all background components:

hiβ1n(t) = −
d0

d1
hiβ(t) +

1
d1

fiβ1n(t) −
d2

d1
hiβ2n(t) + h̃iuβ1n(t)

hiβ2n(t) = −
e0

e2
hiβ(t) −

e1

e2
hiβ1n(t) +

1
e2

fiβ2n(t) + h̃iuβ2n(t)
(A.7)

Here h̃iuβ1n(t) and h̃iuβ2n(t) represent the remaining uncorre-1240

lated background after subtraction of the scaled correction his-
tograms.

For the case of a three-neutron emitter a similar line
of reasoning gives the relation between the measured his-
tograms hiβ(t) and hiβxn(t), corrected for the uncorrelated back-1245

ground contribution, and the unperturbed distributions fiβ(t)
and fiβxn(t). In particular it should take into account the con-
tribution of the β3n decay channel to the one-neutron and two-
neutron time correlation histograms. For convenience we give
here, without deduction, the result:1250

h′iβ(t) = fiβ(t)

h′iβ1n(t) = a0 fiβ(t) + a1 fiβ1n(t) + a2 fiβ2n(t) + a3 fiβ3n(t)

h′iβ2n(t) = b0 fiβ(t) + b1 fiβ1n(t) + b2 fiβ2n(t) + b3 fiβ3n(t)

h′iβ3n(t) = c0 fiβ(t) + c1 fiβ1n(t) + c2 fiβ2n(t) + c3 fiβ3n(t)

(A.8)

The coefficients a0, a1, a2, b0, b1, and b2, are identical to
those given in Eq. A.4, and the new coefficients that appear are
given by

a3 = 3r2
e (1 − r − r1) − (1 + 3re)r1

b3 = 3re(1 − r − r2) + 3r2
e (r1 − r2) − r2

c0 = r3

c1 = r2 − r3

c2 = r1 − r3 + 2re(r2 − r3)

c3 = 1 − r − r3 + 3re(r1 − r3) + 3r2
e (r2 − r3)

(A.9)
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