skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental and Theoretical Insights into the Potential of V2O3 Surface Coatings for Hydrogen Permeable Vanadium Membranes

Journal Article · · Journal of Physical Chemistry. C

A grand challenge of vanadium-based H2 permeable membranes is the development of effective, cheap, and stable catalysts to facilitate H2 dissociation and recombination. This article investigates a facile air treatment to form catalytically active vanadium oxide on the surfaces of dense vanadium foils. The treatment consisted of short air exposure followed by H2 reduction at 823 K, which produced a well-faceted and nanocrystalline V2O3 layer on the foil surfaces. The resulting membranes display stable H2 permeability of 2 ± 0.25 × 10-8 mol·m-1·s-1·Pa-0.5, but transient declines in permeation are observed when operated at both elevated and reduced temperatures. DFT calculations revealed that V2O3 (0001) surfaces display barriers and adsorption energies for H2 dissociation/recombination that are comparable to known H2 activation catalysts. It was found that H2 dissociation is expected to proceed spontaneously on metal-terminated V2O3, with recombinative-desorption anticipated as the rate limiting step.

Research Organization:
Colorado School of Mines, Golden, CO (United States)
Sponsoring Organization:
USDOE Advanced Research Projects Agency - Energy (ARPA-E); USDOE Office of Nuclear Energy (NE); National Science Foundation (NSF)
Grant/Contract Number:
AR0000785; 1512172; 0000785
OSTI ID:
1457549
Journal Information:
Journal of Physical Chemistry. C, Vol. 122, Issue 6; ISSN 1932-7447
Publisher:
American Chemical SocietyCopyright Statement
Country of Publication:
United States
Language:
English
Citation Metrics:
Cited by: 9 works
Citation information provided by
Web of Science

Figures / Tables (10)