
The Parallel Performance of a Groundwater Flow Code
on the Cray T3D*

S. F. Ashbyt R. D. Falgoutt S. G. Smith+ A. F. B. Tompsod

Abstract
This paper summarizes some preliminary results on the parallel performance of PARFLOW,

a new code for the numerical simulation of groundwater flow through three-dimensional
heterogeneous porous media. At present, this code is capable of simulating groundwater flow
for large sites (lo7 spatial zones) on a variety of distributed memory MIMD machines. The
computational kernels are described briefly, and their parallel performance is examined on
the Cray T3D massively parallel computer using Cray’s implementation of the PVM message-
passing library.

1 Introduction
Cleaning up polluted groundwaters is a daunting task facing government and industry alike. The
U.S. Department of Energy, for instance, spends nearly one third of its budget on the cleanup
of its contaminated sites; individual companies are spending tens of millions of dollars per year
on the cleanup of contaminated facilities. The numerical simulation of subsurface fluid flow and
contaminant migration plays an increasingly important role in the design and management of
engineered remediation procedures [8]. Such simulations can be used, for example, to choose the
best cleanup strategy for a given site, and then, once a scheme is chosen, to manage it in the most
cost effective fashion.

Many of the computer codes in use today make unrealistic assumptions about the nature of the
subsurface medium and the associated flow behavior. For example, many codes assume that the
subsurface is homogeneous in composition and spatial distribution. In reality, the subsurface is three-
dimensional and heterogeneous. These heterogeneities result in preferential flow channels, which can
have a dramatic impact on flow and contaminant transport [l]. Consequently, the heterogeneous
nature of the subsurface must be taken into account if one is to draw reliable conclusions from the
numerical simulations.

The size of the site to be modeled (typically several square kilometers) and the need to resolve
heterogeneities (on the order of meters) leads to computational domains with upwards of one
billion spatial zones. Of course, the subsurface is impossible to characterize in this detail, and
so hydrogeologists typically employ geostatistical techniques such as turning bands (see below) to
create statistically accurate realizations of key subsurface properties, particularly the hydraulic
conductivity [7]. Monte Carlo and optimization techniques can be used to quantify the inherent
uncertainty and enable site managers to perform more realistic risk assessments. These techniques
also can be used to evaluate various remediation strategies, say, determining the optimal pumping
configuration in a pump-and-treat scheme.

*This work was supported in part by the Department of Energy (DOE) Defense Programs Technology
Transfer Initiative, the Laboratory Directed Research and Development program at Lawrence Livermore
National Laboratory (LLNL), the Army Corps of Engineers (SERDP), and the Applied Mathematical
Sciences program of the DOE Office of Scientific Computing. It was performed at LLNL under contract
W-7405-ENG-48.

Center for Computational Sciences & Engineering, LLNL, L-316, Livermore, CA 94551
$Earth Sciences Division, LLNL, L-206, Livermore, CA 94551

2 ASHBY, FALGOUT, SMITH, TOMPSON

2 ParFlow Simulator
Computational environmental remediation is compute-intensive and quickly overwhelms all but
the largest of conventional supercomputers. The need to repeatedly run large, time-dependent
simulations necessitates the use of massively parallel processing power. Toward this end, we are
building a parallel flow simulator called PARFLOW. It is designed to be portable across a variety
of distributed memory MIMD machines with message passing, ranging from workstation clusters to
large MPPs. To achieve the best possible performance, we are building the code from scratch rather
than porting an existing code. In addition to portability, the code is scalable (as demonstrated
below) and extensible (via the use of C with some object abstraction).

Our initial focus has been on the accurate and efficient simulation of single phase flow problems.
This is essential because these problems will constitute the main computational cost of the
multiphase, time-dependent simulations in which we are ultimately interested. The mathematical
model for single phase (saturated) steady-state flow is derived from a mass conservation equation
and Darcy’s law, and is given by

(1) - V (KV(h + 2)) - Q = 0

where h is the pressure head (from which the flow velocity field is determined), K is the hydraulic
conductivity (generated via a turning bands algorithm, for example), and Q is a source term (used
to represent pumping wells, for example). At present, the problem domain is assumed to be a
parallelepiped; the boundary conditions may be Dirichlet, Neumann, or mixed.

We solve for the pressure head on a discrete mesh. In the numerical investigations to date,
we have used a single uniform grid (but with different steplengths, Ax, Ay, and Az), and so load
balancing is easy. A standard 7-point finite volume spatial discretization is used. In the case of
saturated flow (our immediate interest), the discretized equations are linear, and so we obtain the
pressure head from the solution of a large, sparse system of linear equations, Ah = f . The coefficient
matrix A is symmetric positive definite and has the usual seven stripe pattern. The matrix has order
N = nz x nY x n,, where the ni are the number of grid points in x, y, and z directions, respectively.
For problems of interest, N is typically in the millions; the large number is dictated by the size
of the physical site and the need to resolve heterogeneities adequately. We solve this system using
preconditioned conjugate gradients, and then difference the pressure head to obtain the velocity
field. This field is then passed to a transport code to simulate contaminant migration.

3 Parallel Implement at ion
The problem data is distributed across a virtual 3D process grid consisting of P = p x q x T processes.
The grid points within a process are arranged as a 3D subgrid, and the code uses a nested loop to
access these points. This loop is our key computational kernel, and its efficient implementation is
crucial as we will see in the next section. The computations are organized so as to avoid explicit data
redistribution, thereby improving the code’s efficiency. (This is one of the benefits of writing the code
from scratch.) Although each process has a piece of the problem domain, we are not doing domain
decomposition in the algorithmic sense. We are solving the full problem rather than independent
subproblems. We have overlapped most of the code’s communication with computations, thereby
enhancing scalability on machines with message-passing macros that permit this.

We are using message-passing to realize portability across a variety of distributed memory
MIMD computing platforms. At present, we are using AMPS (another message passing system),
a message-passing layer derived from Zipcode [6] with additional input/output capabilities (e.g.,
parallel file read/write). This layer eventually will be replaced with the emerging MPI standard.
By layering AMPS on top of PVM, Chameleon, the Reactive Kernel, and the IRIX IPC library,
we have successfully run PARFLOW (in various incarnations) on the following platforms: a single
Sparcstation, a cluster of Sparcstations, a multiprocessor SGI Onyx, an nCUBE/2, an IBM SP-1,
and the Cray T3D.

The generation of the hydraulic conductivity realization is central to the problem definition.
Here we are using Tompson’s turning bands algorithm [7], which is a technique for computing a
spectral random field with given statistical properties (mean p, variance g2, and correlation lengths

e

r)

e

a

DISCLAIMER

This report was prepared as an account of work sponsored
by an agency of the United States Government. Neither
the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or
implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute
or imply its endorsement, recommendation, or favoring by
the United States Government or any agency thereof. The
views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States
Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

PARALLEL PERFORMANCE OF PARFLOW ON CRAY T3D 3

A,, A,, and A,). The algorithm has two phases: the generation of lines and the projection of grid
points onto those lines. In the first phase, a number of rays through the origin (typically 50-100) are
created, and one-dimensional random fields are generated along these. This requires cosines, which
are more expensive than multiplications on RISC machines. (On the Cray T3D, the cosine function
is about ten times slower.) The degree of parallelism here depends on the process grid topology: If
the topology is too skewed, then each process may compute nearly an entire line, which degrades
parallelism. Ideally, the process grid topology should match the topology of the discretized domain
(see Table 1 below). In the second phase, these 1D fields are combined to produce a 3D random
field. Specifically, each point is projected onto the lines, and these values are combined to determine
the value of the 3D field at the given point. This projection phase is fully parallelizable, meaning
that the computations are distributed equally across all processes with no redundancy. In contrast,
some of the line generation computations may be replicated across one or more processes depending
on the problem and the virtual process grid topology.

We have implemented several preconditioned conjugate gradient algorithms for solving the large
linear systems that result from the discretization of (1). The algorithm is well known [4] and will
not be repeated here; its key components are one matrix-vector multiplication, one preconditioning
step, three vector updates, and two inner products. In this paper, we present results for diagonal, 2-
step Jacobi, and multigrid preconditionings; the algorithms are denoted DSCG, JBCG, and MGCG,
respectively. The multigrid preconditioner consists of a single V-cycle with semi-coarsening [2].

The coefficient matrix A is viewed as a stencil distributed across the processes analogous to the
data distribution. To compute the matvec result at a given grid point (2 , j , I C) , we “apply” the stencil
to the grid: For each neighboring grid point specified by the stencil, we multiply the vector value at
that point by the corresponding stencil coefficient, and then sum these products. This is equivalent
to multiplying a row of the matrix by the vector z. By viewing the matrix-vector multiplication in
this way, it is readily apparent which data needs to be communicated, namely, process boundary
data. We therefore exchange interprocess boundary data at the start of a matvec. To facilitate this,
there is a single layer of ghost points for storing the interprocess data; a single layer suffices because
we have a 7-point stencil. Once each process has the data it needs, intraprocess matvecs are carried
out in parallel. Of course, it is possible to overlap some of the communication with computation.
Specifically, the intraprocess matvec can work on the process’ internal mesh points first, and then
update the boundary mesh points after the communication step is complete. For large problems on
machines that allow overlapping of communication and computations, this communication will be
concluded before the internal mesh points have been updated.

4 Parallel Performance
We now describe the parallel performance of the PARFLOW simulator on the Cray T3D. Our machine
has 128 nodes, each consisting of a 150MHz DEC Alpha processor and 64MB of memory. The
operating environment requires that one use a power of two number of processors, and we used the
- 0 3 compiler optimization option. In these experiments, AMPS was layered on top of PVM, and
this implementation performs poorly. We expect much better results when we replace PVM with
Cray’s SHMEM library, or when we replace AMPS with a native MPI port.

Our model problem corresponds to a physical domain of size 1260 x 1260 x 31 m3. The hydraulic
conductivity field has parameters p = 4, (r = 1.5, and A, = 40, A, = 40, and A, = 2. We impose
piecewise linear Dirichlet boundary conditions (for the pressure head) on the four vertical sides of
the domain, and no flow conditions on the top and bottom. The PCG algorithm was halted once
the 2-norm of the relative residual was less than Although this is a contrived test problem,
it serves to illustrate the parallel performance of our algorithms. We are currently working with
colleagues in the Laboratory’s Environmental Protection Department to incorporate their model of
the LLNL site into PARFLOW.

Importance of x-vector length
We first remark that code performance, especially that of the matvec, is extremely dependent on
the number of data points per process in the x direction, which we call the x-vector length. This

4 ASHBY, FALGOUT, SMITH, TOMPSON

TBands
11.4
9.7
9.0
6.2
5.1
8.2
5.8
5.9

TABLE 1
Cray T3D (64 processors) MFLOP Rates

J2CG MGCG

314.4 206.2
346.3 262.1
141.8 128.4
157.7 149.4
58.5 61.0
64.5 71.1
65.2 77.2

270.0 n l a

TABLE 1A. n, x ny x nz = 129 x 129 x 65 TABLE 1B. p x q x r = 4 x 4 x 4 . -

n, x nV x nz I J2CG MGCG
256.1
225.3
150.1
155.5
72.3
74.9
74.3

is because node performance depends on the number of points in the innermost loop of the matvec
routine, and this corresponds to the x direction (recall the discussion above). We believe that this
sensitivity is a result of caching issues on the T3D, but further investigation is needed. Thus, for
best matvec and PCG node performance (ignoring communication), we want p = 1. Although this
choice skews the process grid topology and results in more data being communicated than would a
topology ratio of l:l:l, it minimizes PVM overhead because there are fewer calls to pack routines.

In the experiments below, we choose p = 1 to optimize overall performance of the PCG
algorithm. The parallelism of the turning bands line generation phase suffers when p = 1, but
it is called just once per simulation, whereas the linear solve must be done at each time step (when
we move to the time-dependent realm). Of course, it might be possible to rewrite the matvec routine
(i.e., the innermost loop) and the communication routines to perform better, and we are exploring
these options.

To see this behavior, examine Table 1A. Here we fix the problem size to be 129 x 129 x 65
and vary the process grid topology for turning bands, JZCG, and MGCG. Notice the variation in
MFLOP rates. The best rates are obtained when p = 1, which gives the longest possible x-vector
lengths. We see the same effect in Table lB, where we fix the process grid topology (4 x 4 x 4) and
vary n,, ny, and n, (but keep the product constant). Again, we see the importance of having long
Ic-vectors. Although the MGCG MFLOP rate is less than that for JSCG, it converges much more
rapidly. For example, on 64 processors, MGCG is an order of magnitude faster than J2CG. See [2]
for a description of this algorithm and its performance.

Eficiency and scaled speedup graphs
In the next series of experiments we report efficiency and scaled speedup for the key components of
PARFLOW: turning bands generator, matrix-vector multiplication, multigrid preconditioning, and
each of the PCG algorithms, DSCG, J2CG, and MGCG. In calculating the efficiency, we fixed the
total problem size at N = 64 x 64 x 32 and measured the time, Tp, as the number of processes P
increased. The efficiencies (given by Tl/PTp) drop off sharply because the problem size per process
is too small for larger P. (When P = 128, we have only 1024 grid points per process, and there is
too little work for the amount of communication.) Scaled speedup is defined to be Tl/Tp, where
now the total problem size is allowed to grow with P. In our experiments, each processor was given
217 M lo5 grid points. To calculate the efficiency and scaled speedup graphs, it was necessary to
vary the p : q : T and n, : ny : nz ratios. As discussed above, this has a dramatic impact on node
performance, which (at least in part) explains the erratic performance graphs. Since our goal is
to minimize time to solution (rather than maximize MFLOP rates), we fixed p = 1 and let q and
T vary as needed. If we had chosen p : q : T to match n, : ny : n,, which would have minimized
communication, we probably would have seen smoother graphs, but the results would have had
less relevance. Despite this, the algorithms are fairly scalable, meaning that the time per iteration
remains constant as we increase the problem size and number of processes in tandem.

e

e

e

0

PARALLEL PERFORMANCE OF PARFLOW ON CRAY T3D 5

In Figures 1 and 2, we report efficiencies and scaled speedups for the turning bands, matrix-
vector multiplication, and multigrid preconditioning routines. The turning bands performance is
hindered by the line generation phase, which is a consequence of choosing p = 1. Recall that this
phase is less parallel than the projection phase, and also requires cosines. We remark that matvec is
the dominant cost in both DSCG and J2CG, but this is not true of MGCG. Here, the preconditioning
step consists of a single V-cycle with semi-coarsening (to ameliorate anisotropy and/or skewed grid
aspect ratios), and there is more communication than in DSCG and J2CG.

In Figures 3 and 4, we report efficiencies and scaled speedups for DSCG, JBCG, and MGCG.
The poor efficiencies are attributable to two sources: (i) the inefficiency of the messagepassing
routines, and (ii) the fact that for large P, the size of the subproblem per process is too small.
The scalability curves of DSCG and J2CG are similar; both drop off as the number of processes
increases. MGCG, on the other hand, appears to be more scalable. We believe that we can improve
the performance (i.e., flatten and raise the scalability curves) of all three algorithms by using a
faster communication library (e.g., native MPI).

Acknowledgements
We acknowledge the valuable participation of Charles Baldwin, John Bell, William Bosl, Thomas
Fogwell, Gwen Loosmore, and John Ziagos in the PARFLOW project. In particular, we thank
Dr. Thomas Fogwell for his helpful comments and guidance concerning multigrid.

The Cray T3D experiments described in this paper were run on the 128-node machine located in
the Center for Computational Sciences and Engineering at Lawrence Livermore National Laboratory
as part of the H4P technology transfer initiative funded by DOE Defense Programs. Early code
development was done on the Cray T3D located at the Pittsburgh Supercomputer Center.

References
[l] R. ABABOU, D. B. MCLAUGHLIN, L. W. GELHAR, AND A. F. B. TOMPSON, Numerical simulation of

three-dimensional saturated flow in randomly heterogeneous porous media, Transport in Porous Media,

[2] S. F. ASHBY, R. D. FALGOUT, S. G. SMITH, AND T. W. FOGWELL, Multigrid preconditioned conjugate
gradients f o r the numerical simulation of groundwater flow on the Cray T3D, tech. report, Lawrence
Livermore National Laboratory, 1994. Submitted to the proceedings of the ANS International
Conference on Mathematics and Computations, Reactor Physics, and Environmental Analyses, April
30-May 4, 1995, Portland, OR.

[3] S. F. ASHBY, R. D. FALGOUT, S. G. SMITH, AND A. F. B. TOMPSON, Modeling groundwater flow
o n MPPs, in Proc. 1993 Scalable Parallel Libraries Conference, A. Skjellum and D. Resse, eds., IEEE
Computer Society Press, 1994, pp. 17-25. Held at Mississippi State University, October 6-8, 1993.

[4] P. CONCUS, G. H. GOLUB, AND D. P. O’LEARY, A generalized conjugate gradient method for the
numerical solution of elliptic partial diaerential equations, in Sparse Matrix Computations, J. R. Bunch
and D. J. Rose, eds., Academic Press, New York, 1976, pp. 309-332.

151 P. D. MEYER, A. J. VALOCCHI, S. F. ASHBY, AND P. E. SAYLOR, A numerical investigation of
the conjugate gradient method as applied to three-dimensional groundwater flow problems in randomly
heterogeneous porous media, Water Resources Res., 25 (1989), pp. 1440-1446.

[6] A. SKJELLUM, S. G. SMITH, N. E. DOSS, A. P. LEUNG, AND M. MORARI, The design and evolution
of Zipcode, Parallel Computing, 20 (1994), pp. 565-596.

[7] A. F. B. TOMPSON, R. ABABOU, AND L. W. GELHAR, Implementation of of the three-dimensional
turning bands random field generator, Water Resources Res., 25 (1989), pp. 2227-2243.

[8] A. F. B. TOMPSON, S. F. ASHBY, R. D. FALGOUT, S. G. SMITH, T. W. FOGWELL, AND G. A.
LOOSMORE, Use of high performance computing to examine the effectiveness of aquifer remediation,
in Proc. X International Conference on Computational Methods in Water Resources, 1994. Held in
Heidelberg, Germany, July 19-22, 1994.

4 (1989), pp. 549-565.

6 ASHBY, FALGOUT, SMITH, TOMPSON

Turning Bands Matvec MG Preconditioner
1 .o

.- E : 0 . 8 h 0.6 0.4 i:/q 0.4 !""-I .- 0.4

0.2 0.2 0.2

0.0 0.0 0.0
0 32 64 96 I28 0 32 64 96 128 0 32 64 96 128

Number of Processx, Number of Processors Number of Processors

4

a

FIG. 1. Parallel eficiency on the Cray T3D.

Turning Bands

4 0.8

p 0.4

1 0.6
8 0.2

0.0 4-1
0 32 64 96 128

Number of Processors

FIG.

DSCG

DSCG

Matvec MG Preconditioner

0 4 0.6 :::rj, ;;ri
rn
2 0.4 0.4

3 0.2 02

0.0 0.0
0 32 64 96 128 0 32 64 96 128

Number of Processors Number of ProceSsorS

2. Scaled speedup o n the Cray T3D.

J2CG

0.6

E 0.4

0.2

0.0

w

0 32 64 96 128
Number of Processors

MGCG

e 0.6

E 0.4

02
W

.; 0.0 l's 0 32 64 96 128

Number of Processors

JPCG MGCG

1.0 /, 1 qy
D 0.2

0.0
0 32 64 96 128

Number of Processors

FIG. 3. Parallel eficiency on the Cray T3D.

E w ,! "1.m 0.4

0.2

0.0
0 32 64 96 128

Number of Processors

0.0 4-1
0 32 64 96 128 0 3.2 64 96 128

Number of Processors Number of Processors

*

e

FIG. 4. Scaled speedup on the Crag T3D.

