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Abstract 
This paper summarizes some preliminary results on the parallel performance of PARFLOW, 

a new code for the numerical simulation of groundwater flow through three-dimensional 
heterogeneous porous media. At present, this code is capable of simulating groundwater flow 
for large sites (lo7 spatial zones) on a variety of distributed memory MIMD machines. The 
computational kernels are described briefly, and their parallel performance is examined on 
the Cray T3D massively parallel computer using Cray’s implementation of the PVM message- 
passing library. 

1 Introduction 
Cleaning up polluted groundwaters is a daunting task facing government and industry alike. The 
U.S. Department of Energy, for instance, spends nearly one third of its budget on the cleanup 
of its contaminated sites; individual companies are spending tens of millions of dollars per year 
on the cleanup of contaminated facilities. The numerical simulation of subsurface fluid flow and 
contaminant migration plays an increasingly important role in the design and management of 
engineered remediation procedures [8]. Such simulations can be used, for example, to choose the 
best cleanup strategy for a given site, and then, once a scheme is chosen, to manage it in the most 
cost effective fashion. 

Many of the computer codes in use today make unrealistic assumptions about the nature of the 
subsurface medium and the associated flow behavior. For example, many codes assume that the 
subsurface is homogeneous in composition and spatial distribution. In reality, the subsurface is three- 
dimensional and heterogeneous. These heterogeneities result in preferential flow channels, which can 
have a dramatic impact on flow and contaminant transport [l]. Consequently, the heterogeneous 
nature of the subsurface must be taken into account if one is to draw reliable conclusions from the 
numerical simulations. 

The size of the site to be modeled (typically several square kilometers) and the need to resolve 
heterogeneities (on the order of meters) leads to computational domains with upwards of one 
billion spatial zones. Of course, the subsurface is impossible to characterize in this detail, and 
so hydrogeologists typically employ geostatistical techniques such as turning bands (see below) to 
create statistically accurate realizations of key subsurface properties, particularly the hydraulic 
conductivity [7]. Monte Carlo and optimization techniques can be used to quantify the inherent 
uncertainty and enable site managers to perform more realistic risk assessments. These techniques 
also can be used to evaluate various remediation strategies, say, determining the optimal pumping 
configuration in a pump-and-treat scheme. 
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2 ParFlow Simulator 
Computational environmental remediation is compute-intensive and quickly overwhelms all but 
the largest of conventional supercomputers. The need to repeatedly run large, time-dependent 
simulations necessitates the use of massively parallel processing power. Toward this end, we are 
building a parallel flow simulator called PARFLOW. It is designed to be portable across a variety 
of distributed memory MIMD machines with message passing, ranging from workstation clusters to 
large MPPs. To achieve the best possible performance, we are building the code from scratch rather 
than porting an existing code. In addition to portability, the code is scalable (as demonstrated 
below) and extensible (via the use of C with some object abstraction). 

Our initial focus has been on the accurate and efficient simulation of single phase flow problems. 
This is essential because these problems will constitute the main computational cost of the 
multiphase, time-dependent simulations in which we are ultimately interested. The mathematical 
model for single phase (saturated) steady-state flow is derived from a mass conservation equation 
and Darcy’s law, and is given by 

(1) - V (KV(h  + 2)) - Q = 0 

where h is the pressure head (from which the flow velocity field is determined), K is the hydraulic 
conductivity (generated via a turning bands algorithm, for example), and Q is a source term (used 
to represent pumping wells, for example). At present, the problem domain is assumed to be a 
parallelepiped; the boundary conditions may be Dirichlet, Neumann, or mixed. 

We solve for the pressure head on a discrete mesh. In the numerical investigations to date, 
we have used a single uniform grid (but with different steplengths, Ax, Ay, and Az), and so load 
balancing is easy. A standard 7-point finite volume spatial discretization is used. In the case of 
saturated flow (our immediate interest), the discretized equations are linear, and so we obtain the 
pressure head from the solution of a large, sparse system of linear equations, Ah = f .  The coefficient 
matrix A is symmetric positive definite and has the usual seven stripe pattern. The matrix has order 
N = nz x nY x n,, where the ni are the number of grid points in x, y, and z directions, respectively. 
For problems of interest, N is typically in the millions; the large number is dictated by the size 
of the physical site and the need to resolve heterogeneities adequately. We solve this system using 
preconditioned conjugate gradients, and then difference the pressure head to obtain the velocity 
field. This field is then passed to a transport code to simulate contaminant migration. 

3 Parallel Implement at ion 
The problem data is distributed across a virtual 3D process grid consisting of P = p x  q x T processes. 
The grid points within a process are arranged as a 3D subgrid, and the code uses a nested loop to 
access these points. This loop is our key computational kernel, and its efficient implementation is 
crucial as we will see in the next section. The computations are organized so as to avoid explicit data 
redistribution, thereby improving the code’s efficiency. (This is one of the benefits of writing the code 
from scratch.) Although each process has a piece of the problem domain, we are not doing domain 
decomposition in the algorithmic sense. We are solving the full problem rather than independent 
subproblems. We have overlapped most of the code’s communication with computations, thereby 
enhancing scalability on machines with message-passing macros that permit this. 

We are using message-passing to realize portability across a variety of distributed memory 
MIMD computing platforms. At present, we are using AMPS (another message passing system), 
a message-passing layer derived from Zipcode [6] with additional input/output capabilities (e.g., 
parallel file read/write). This layer eventually will be replaced with the emerging MPI standard. 
By layering AMPS on top of PVM, Chameleon, the Reactive Kernel, and the IRIX IPC library, 
we have successfully run PARFLOW (in various incarnations) on the following platforms: a single 
Sparcstation, a cluster of Sparcstations, a multiprocessor SGI Onyx, an nCUBE/2, an IBM SP-1, 
and the Cray T3D. 

The generation of the hydraulic conductivity realization is central to the problem definition. 
Here we are using Tompson’s turning bands algorithm [7], which is a technique for computing a 
spectral random field with given statistical properties (mean p, variance g2, and correlation lengths 

e 

r) 

e 

a 



DISCLAIMER 

This report was prepared as an account of work sponsored 
by an agency of the United States Government. Neither 
the United States Government nor any agency thereof, nor 
any of their employees, make any warranty, express or 
implied, or assumes any legal liability or responsibility for 
the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial 
product, process, or service by trade name, trademark, 
manufacturer, or otherwise does not necessarily constitute 
or imply its endorsement, recommendation, or favoring by 
the United States Government or any agency thereof. The 
views and opinions of authors expressed herein do not 
necessarily state or reflect those of the United States 
Government or any agency thereof. 



DISCLAIMER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
document. 



PARALLEL PERFORMANCE OF PARFLOW ON CRAY T3D 3 

A,, A,, and A,). The algorithm has two phases: the generation of lines and the projection of grid 
points onto those lines. In the first phase, a number of rays through the origin (typically 50-100) are 
created, and one-dimensional random fields are generated along these. This requires cosines, which 
are more expensive than multiplications on RISC machines. (On the Cray T3D, the cosine function 
is about ten times slower.) The degree of parallelism here depends on the process grid topology: If 
the topology is too skewed, then each process may compute nearly an entire line, which degrades 
parallelism. Ideally, the process grid topology should match the topology of the discretized domain 
(see Table 1 below). In the second phase, these 1D fields are combined to produce a 3D random 
field. Specifically, each point is projected onto the lines, and these values are combined to  determine 
the value of the 3D field at the given point. This projection phase is fully parallelizable, meaning 
that the computations are distributed equally across all processes with no redundancy. In contrast, 
some of the line generation computations may be replicated across one or more processes depending 
on the problem and the virtual process grid topology. 

We have implemented several preconditioned conjugate gradient algorithms for solving the large 
linear systems that result from the discretization of (1). The algorithm is well known [4] and will 
not be repeated here; its key components are one matrix-vector multiplication, one preconditioning 
step, three vector updates, and two inner products. In this paper, we present results for diagonal, 2- 
step Jacobi, and multigrid preconditionings; the algorithms are denoted DSCG, JBCG, and MGCG, 
respectively. The multigrid preconditioner consists of a single V-cycle with semi-coarsening [2]. 

The coefficient matrix A is viewed as a stencil distributed across the processes analogous to the 
data distribution. To compute the matvec result at a given grid point ( 2 ,  j ,  I C ) ,  we “apply” the stencil 
to the grid: For each neighboring grid point specified by the stencil, we multiply the vector value at 
that point by the corresponding stencil coefficient, and then sum these products. This is equivalent 
to multiplying a row of the matrix by the vector z. By viewing the matrix-vector multiplication in 
this way, it is readily apparent which data needs to be communicated, namely, process boundary 
data. We therefore exchange interprocess boundary data at the start of a matvec. To facilitate this, 
there is a single layer of ghost points for storing the interprocess data; a single layer suffices because 
we have a 7-point stencil. Once each process has the data it needs, intraprocess matvecs are carried 
out in parallel. Of course, it is possible to overlap some of the communication with computation. 
Specifically, the intraprocess matvec can work on the process’ internal mesh points first, and then 
update the boundary mesh points after the communication step is complete. For large problems on 
machines that allow overlapping of communication and computations, this communication will be 
concluded before the internal mesh points have been updated. 

4 Parallel Performance 
We now describe the parallel performance of the PARFLOW simulator on the Cray T3D. Our machine 
has 128 nodes, each consisting of a 150MHz DEC Alpha processor and 64MB of memory. The 
operating environment requires that one use a power of two number of processors, and we used the 
- 0 3  compiler optimization option. In these experiments, AMPS was layered on top of PVM, and 
this implementation performs poorly. We expect much better results when we replace PVM with 
Cray’s SHMEM library, or when we replace AMPS with a native MPI port. 

Our model problem corresponds to a physical domain of size 1260 x 1260 x 31 m3. The hydraulic 
conductivity field has parameters p = 4, (r = 1.5, and A, = 40, A, = 40, and A, = 2. We impose 
piecewise linear Dirichlet boundary conditions (for the pressure head) on the four vertical sides of 
the domain, and no flow conditions on the top and bottom. The PCG algorithm was halted once 
the 2-norm of the relative residual was less than Although this is a contrived test problem, 
it serves to illustrate the parallel performance of our algorithms. We are currently working with 
colleagues in the Laboratory’s Environmental Protection Department to incorporate their model of 
the LLNL site into PARFLOW. 

Importance of x-vector length 
We first remark that code performance, especially that of the matvec, is extremely dependent on 
the number of data points per process in the x direction, which we call the x-vector length. This 
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TBands 
11.4 
9.7 
9.0 
6.2 
5.1 
8.2 
5.8 
5.9 

TABLE 1 
Cray T3D (64 processors) MFLOP Rates 

J2CG MGCG 

314.4 206.2 
346.3 262.1 
141.8 128.4 
157.7 149.4 
58.5 61.0 
64.5 71.1 
65.2 77.2 

270.0 n l a  

TABLE 1A. n, x ny x nz = 129 x 129 x 65 TABLE 1B. p x q x r = 4 x 4 x 4 . -  

n, x nV x nz I J2CG MGCG 
256.1 
225.3 
150.1 
155.5 
72.3 
74.9 
74.3 

is because node performance depends on the number of points in the innermost loop of the matvec 
routine, and this corresponds to the x direction (recall the discussion above). We believe that this 
sensitivity is a result of caching issues on the T3D, but further investigation is needed. Thus, for 
best matvec and PCG node performance (ignoring communication), we want p = 1. Although this 
choice skews the process grid topology and results in more data being communicated than would a 
topology ratio of l:l:l, it minimizes PVM overhead because there are fewer calls to pack routines. 

In the experiments below, we choose p = 1 to optimize overall performance of the PCG 
algorithm. The parallelism of the turning bands line generation phase suffers when p = 1, but 
it is called just once per simulation, whereas the linear solve must be done at each time step (when 
we move to the time-dependent realm). Of course, it might be possible to rewrite the matvec routine 
(i.e., the innermost loop) and the communication routines to perform better, and we are exploring 
these options. 

To see this behavior, examine Table 1A. Here we fix the problem size to be 129 x 129 x 65 
and vary the process grid topology for turning bands, JZCG, and MGCG. Notice the variation in 
MFLOP rates. The best rates are obtained when p = 1, which gives the longest possible x-vector 
lengths. We see the same effect in Table lB, where we fix the process grid topology (4 x 4 x 4) and 
vary n,, ny, and n, (but keep the product constant). Again, we see the importance of having long 
Ic-vectors. Although the MGCG MFLOP rate is less than that for JSCG, it converges much more 
rapidly. For example, on 64 processors, MGCG is an order of magnitude faster than J2CG. See [2] 
for a description of this algorithm and its performance. 

Eficiency and scaled speedup graphs 
In the next series of experiments we report efficiency and scaled speedup for the key components of 
PARFLOW: turning bands generator, matrix-vector multiplication, multigrid preconditioning, and 
each of the PCG algorithms, DSCG, J2CG, and MGCG. In calculating the efficiency, we fixed the 
total problem size at N = 64 x 64 x 32 and measured the time, Tp, as the number of processes P 
increased. The efficiencies (given by Tl/PTp) drop off sharply because the problem size per process 
is too small for larger P. (When P = 128, we have only 1024 grid points per process, and there is 
too little work for the amount of communication.) Scaled speedup is defined to be Tl/Tp, where 
now the total problem size is allowed to grow with P. In our experiments, each processor was given 
217 M lo5 grid points. To calculate the efficiency and scaled speedup graphs, it was necessary to 
vary the p : q : T and n, : ny : nz ratios. As discussed above, this has a dramatic impact on node 
performance, which (at least in part) explains the erratic performance graphs. Since our goal is 
to minimize time to  solution (rather than maximize MFLOP rates), we fixed p = 1 and let q and 
T vary as needed. If we had chosen p : q : T to match n, : ny : n,, which would have minimized 
communication, we probably would have seen smoother graphs, but the results would have had 
less relevance. Despite this, the algorithms are fairly scalable, meaning that the time per iteration 
remains constant as we increase the problem size and number of processes in tandem. 
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In Figures 1 and 2, we report efficiencies and scaled speedups for the turning bands, matrix- 
vector multiplication, and multigrid preconditioning routines. The turning bands performance is 
hindered by the line generation phase, which is a consequence of choosing p = 1. Recall that this 
phase is less parallel than the projection phase, and also requires cosines. We remark that matvec is 
the dominant cost in both DSCG and J2CG, but this is not true of MGCG. Here, the preconditioning 
step consists of a single V-cycle with semi-coarsening (to ameliorate anisotropy and/or skewed grid 
aspect ratios), and there is more communication than in DSCG and J2CG. 

In Figures 3 and 4, we report efficiencies and scaled speedups for DSCG, JBCG, and MGCG. 
The poor efficiencies are attributable to two sources: (i) the inefficiency of the messagepassing 
routines, and (ii) the fact that for large P, the size of the subproblem per process is too small. 
The scalability curves of DSCG and J2CG are similar; both drop off as the number of processes 
increases. MGCG, on the other hand, appears to be more scalable. We believe that we can improve 
the performance (i.e., flatten and raise the scalability curves) of all three algorithms by using a 
faster communication library (e.g., native MPI). 
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FIG. 1. Parallel eficiency on the Cray T3D. 
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FIG. 4. Scaled speedup on the Crag T3D. 


