skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Influence of electron–phonon interactions in single dopant nanowire transistors

Journal Article · · Journal of Applied Physics
DOI:https://doi.org/10.1063/1.4898863· OSTI ID:22308194
; ;  [1]
  1. IM2NP, UMR CNRS 6242, Bât. IRPHE, Technopôle de Château-Gombert, 13384 Marseille, Cedex 13 (France)

Single dopant nanowire transistors can be viewed as the ultimate miniaturization of nano electronic devices. In this work, we theoretically investigate the influence of the electron-phonon coupling on their transport properties using a non-equilibrium Green's function approach in the self-consistent Born approximation. For an impurity located at the center of the wire we find that, at room temperature, acoustic phonons broaden the impurity level so that the bistability predicted in the ballistic regime is suppressed. Optical phonons are found to have a beneficial impact on carrier transport via a phonon-assisted tunneling effect. We discuss the position and temperature dependence of these effects, showing that such systems might be very promising for engineering of ultimate devices.

OSTI ID:
22308194
Journal Information:
Journal of Applied Physics, Vol. 116, Issue 16; Other Information: (c) 2014 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA); ISSN 0021-8979
Country of Publication:
United States
Language:
English