DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tuning nonequilibrium phase transitions with inertia

Abstract

In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation–dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. Further, this density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [4]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)
  3. Univ. of California, Berkeley, CA (United States)
  4. California Institute of Technology (CalTech), Pasadena, CA (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division (CSGB); National Science Foundation (NSF); USDOE
OSTI Identifier:
2229710
Alternate Identifier(s):
OSTI ID: 1957684
Grant/Contract Number:  
AC02-05CH11231; CBET-1803662
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 158; Journal Issue: 7; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Phase transitions; Nonequilibrium thermodynamics; Rotational dynamics; Polarization; Gas liquid interfaces; Sphere packings; Constitutive relations; Nonequilibrium statistical mechanics; Stochastic processes

Citation Formats

Omar, Ahmad K., Klymko, Katherine, GrandPre, Trevor, Geissler, Phillip L., and Brady, John F. Tuning nonequilibrium phase transitions with inertia. United States: N. p., 2023. Web. doi:10.1063/5.0138256.
Omar, Ahmad K., Klymko, Katherine, GrandPre, Trevor, Geissler, Phillip L., & Brady, John F. Tuning nonequilibrium phase transitions with inertia. United States. https://doi.org/10.1063/5.0138256
Omar, Ahmad K., Klymko, Katherine, GrandPre, Trevor, Geissler, Phillip L., and Brady, John F. Fri . "Tuning nonequilibrium phase transitions with inertia". United States. https://doi.org/10.1063/5.0138256. https://www.osti.gov/servlets/purl/2229710.
@article{osti_2229710,
title = {Tuning nonequilibrium phase transitions with inertia},
author = {Omar, Ahmad K. and Klymko, Katherine and GrandPre, Trevor and Geissler, Phillip L. and Brady, John F.},
abstractNote = {In striking contrast to equilibrium systems, inertia can profoundly alter the structure of active systems. Here, we demonstrate that driven systems can exhibit effective equilibrium-like states with increasing particle inertia, despite rigorously violating the fluctuation–dissipation theorem. Increasing inertia progressively eliminates motility-induced phase separation and restores equilibrium crystallization for active Brownian spheres. This effect appears to be general for a wide class of active systems, including those driven by deterministic time-dependent external fields, whose nonequilibrium patterns ultimately disappear with increasing inertia. The path to this effective equilibrium limit can be complex, with finite inertia sometimes acting to accentuate nonequilibrium transitions. The restoration of near equilibrium statistics can be understood through the conversion of active momentum sources to passive-like stresses. Unlike truly equilibrium systems, the effective temperature is now density dependent, the only remnant of the nonequilibrium dynamics. Further, this density-dependent temperature can in principle introduce departures from equilibrium expectations, particularly in response to strong gradients. Our results provide additional insight into the effective temperature ansatz while revealing a mechanism to tune nonequilibrium phase transitions.},
doi = {10.1063/5.0138256},
journal = {Journal of Chemical Physics},
number = 7,
volume = 158,
place = {United States},
year = {Fri Feb 17 00:00:00 EST 2023},
month = {Fri Feb 17 00:00:00 EST 2023}
}

Works referenced in this record:

Applicability of effective pair potentials for active Brownian particles
journal, September 2016


The force on a boundary in active matter
journal, November 2015


Motility-Induced Temperature Difference in Coexisting Phases
journal, November 2019


Fluctuation-dissipation in active matter
journal, May 2019

  • Burkholder, Eric W.; Brady, John F.
  • The Journal of Chemical Physics, Vol. 150, Issue 18
  • DOI: 10.1063/1.5081725

Inertial dynamics of an active Brownian particle
journal, September 2022


Hyperuniform Active Chiral Fluids with Tunable Internal Structure
journal, May 2022


Role of Repulsive Forces in Determining the Equilibrium Structure of Simple Liquids
journal, June 1971

  • Weeks, John D.; Chandler, David; Andersen, Hans C.
  • The Journal of Chemical Physics, Vol. 54, Issue 12
  • DOI: 10.1063/1.1674820

Freezing and phase separation of self-propelled disks
journal, January 2014

  • Fily, Yaouen; Henkes, Silke; Marchetti, M. Cristina
  • Soft Matter, Vol. 10, Issue 13
  • DOI: 10.1039/c3sm52469h

Acoustic trapping of active matter
journal, March 2016

  • Takatori, Sho C.; De Dier, Raf; Vermant, Jan
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10694

Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?
journal, January 2018

  • Paliwal, Siddharth; Rodenburg, Jeroen; van Roij, René
  • New Journal of Physics, Vol. 20, Issue 1
  • DOI: 10.1088/1367-2630/aa9b4d

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Information transfer and behavioural inertia in starling flocks
journal, July 2014

  • Attanasi, Alessandro; Cavagna, Andrea; Del Castello, Lorenzo
  • Nature Physics, Vol. 10, Issue 9
  • DOI: 10.1038/nphys3035

Effective Temperatures in Driven Systems: Static Versus Time-Dependent Relations
journal, October 2004


Hydrodynamic effects on the liquid-hexatic transition of active colloids
journal, September 2022


Interface height fluctuations and surface tension of driven liquids with time-dependent dynamics
journal, March 2019

  • del Junco, Clara; Vaikuntanathan, Suriyanarayanan
  • The Journal of Chemical Physics, Vol. 150, Issue 9
  • DOI: 10.1063/1.5042251

Hidden entropy production and work fluctuations in an ideal active gas
journal, August 2018


Pressure, surface tension, and curvature in active systems: A touch of equilibrium
journal, May 2019

  • Wittmann, René; Smallenburg, Frank; Brader, Joseph M.
  • The Journal of Chemical Physics, Vol. 150, Issue 17
  • DOI: 10.1063/1.5086390

Inertial effects on the stress generation of active fluids
journal, September 2017


Statistical mechanics of transport processes in active fluids. II. Equations of hydrodynamics for active Brownian particles
journal, April 2019

  • Epstein, Jeffrey M.; Klymko, Katherine; Mandadapu, Kranthi K.
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5054912

Motor-driven effective temperature and viscoelastic response of active matter
journal, June 2010


Inertial effects of self-propelled particles: From active Brownian to active Langevin motion
journal, January 2020

  • Löwen, Hartmut
  • The Journal of Chemical Physics, Vol. 152, Issue 4
  • DOI: 10.1063/1.5134455

Jerky active matter: a phase field crystal model with translational and orientational memory
journal, June 2021

  • te Vrugt, Michael; Jeggle, Julian; Wittkowski, Raphael
  • New Journal of Physics, Vol. 23, Issue 6
  • DOI: 10.1088/1367-2630/abfa61

Active Brownian particles at interfaces: An effective equilibrium approach
journal, June 2016


Inertial effects on crystallization of active particles
journal, November 2021

  • Liao, Jing-jing; Lin, Fu-jun; Ai, Bao-quan
  • Physica A: Statistical Mechanics and its Applications, Vol. 582
  • DOI: 10.1016/j.physa.2021.126251

Non-conservative forces and effective temperatures in active polymers
journal, January 2011

  • Loi, Davide; Mossa, Stefano; Cugliandolo, Leticia F.
  • Soft Matter, Vol. 7, Issue 21
  • DOI: 10.1039/c1sm05819c

Lattice Model to Derive the Fluctuating Hydrodynamics of Active Particles with Inertia
journal, November 2017


Motility-Induced Phase Separation
journal, March 2015


Self-propelled particle in an external potential: Existence of an effective temperature
journal, July 2014


Energy dissipation and fluctuations in a driven liquid
journal, March 2018

  • del Junco, Clara; Tociu, Laura; Vaikuntanathan, Suriyanarayanan
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 14
  • DOI: 10.1073/pnas.1713573115

Effective interactions in active Brownian suspensions
journal, April 2015


Lamellar to Micellar Phases and Beyond: When Tactic Active Systems Admit Free Energy Functionals
journal, November 2020


Statistical mechanics of powder mixtures
journal, June 1989


Phase Separation and Multibody Effects in Three-Dimensional Active Brownian Particles
journal, January 2021


Inertial delay of self-propelled particles
journal, December 2018


Inertia Drives a Flocking Phase Transition in Viscous Active Fluids
journal, September 2021


Optimizing active work: Dynamical phase transitions, collective motion, and jamming
journal, February 2019


Communication: Effective temperature and glassy dynamics of active matter
journal, August 2011

  • Wang, Shenshen; Wolynes, Peter G.
  • The Journal of Chemical Physics, Vol. 135, Issue 5
  • DOI: 10.1063/1.3624753

Hydrodynamics of random-organizing hyperuniform fluids
journal, October 2019

  • Lei, Qun-Li; Ni, Ran
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 46
  • DOI: 10.1073/pnas.1911596116

Phase Diagram of Active Brownian Spheres: Crystallization and the Metastability of Motility-Induced Phase Separation
journal, May 2021


Effective equilibrium states in the colored-noise model for active matter I. Pairwise forces in the Fox and unified colored noise approximations
journal, November 2017

  • Wittmann, René; Maggi, C.; Sharma, A.
  • Journal of Statistical Mechanics: Theory and Experiment, Vol. 2017, Issue 11
  • DOI: 10.1088/1742-5468/aa8c1f

Pressure and diffusion of active matter with inertia
journal, January 2020


How Dissipation Constrains Fluctuations in Nonequilibrium Liquids: Diffusion, Structure, and Biased Interactions
journal, November 2019


Inertial self-propelled particles
journal, January 2021

  • Caprini, Lorenzo; Marini Bettolo Marconi, Umberto
  • The Journal of Chemical Physics, Vol. 154, Issue 2
  • DOI: 10.1063/5.0030940

Microscopic origins of the swim pressure and the anomalous surface tension of active matter
journal, January 2020


Pressure and Phase Equilibria in Interacting Active Brownian Spheres
journal, May 2015


Inertial particle under active fluctuations: Diffusion and work distributions
journal, April 2022


Active brownian particles and run-and-tumble particles: A comparative study
journal, July 2015

  • Solon, A. P.; Cates, M. E.; Tailleur, J.
  • The European Physical Journal Special Topics, Vol. 224, Issue 7
  • DOI: 10.1140/epjst/e2015-02457-0

Swim Pressure: Stress Generation in Active Matter
journal, July 2014


Effective Temperatures of a Driven System Near Jamming
journal, August 2002


Melting Transition and Communal Entropy for Hard Spheres
journal, October 1968

  • Hoover, William G.; Ree, Francis H.
  • The Journal of Chemical Physics, Vol. 49, Issue 8
  • DOI: 10.1063/1.1670641

Anomalous thermomechanical properties of a self-propelled colloidal fluid
journal, May 2014


Effective temperature concept evaluated in an active colloid mixture
journal, July 2017

  • Han, Ming; Yan, Jing; Granick, Steve
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 29
  • DOI: 10.1073/pnas.1706702114

Effective temperature of active matter
journal, May 2008


Pressure is not a state function for generic active fluids
journal, June 2015

  • Solon, A. P.; Fily, Y.; Baskaran, A.
  • Nature Physics, Vol. 11, Issue 8
  • DOI: 10.1038/nphys3377

Motion of a self-propelled particle with rotational inertia
journal, January 2022

  • Lisin, E. A.; Vaulina, O. S.; Lisina, I. I.
  • Physical Chemistry Chemical Physics, Vol. 24, Issue 23
  • DOI: 10.1039/d2cp01313d

Van't Hoff's law for active suspensions: the role of the solvent chemical potential
journal, January 2017

  • Rodenburg, Jeroen; Dijkstra, Marjolein; van Roij, René
  • Soft Matter, Vol. 13, Issue 47
  • DOI: 10.1039/c7sm01432e

Phase separation and state oscillation of active inertial particles
journal, January 2020

  • Dai, Chengyu; Bruss, Isaac R.; Glotzer, Sharon C.
  • Soft Matter, Vol. 16, Issue 11
  • DOI: 10.1039/c9sm01683j

Entropy production fluctuations encode collective behavior in active matter
journal, January 2021


HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
journal, February 2020


Hard spheres: crystallization and glass formation
journal, December 2009

  • Pusey, P. N.; Zaccarelli, E.; Valeriani, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 367, Issue 1909
  • DOI: 10.1098/rsta.2009.0181

Theory of powders
journal, June 1989

  • Edwards, S. F.; Oakeshott, R. B. S.
  • Physica A: Statistical Mechanics and its Applications, Vol. 157, Issue 3
  • DOI: 10.1016/0378-4371(89)90034-4

Dissipation controls transport and phase transitions in active fluids: mobility, diffusion and biased ensembles
journal, January 2020

  • Fodor, Étienne; Nemoto, Takahiro; Vaikuntanathan, Suriyanarayanan
  • New Journal of Physics, Vol. 22, Issue 1
  • DOI: 10.1088/1367-2630/ab6353

Time-dependent inertia of self-propelled particles: The Langevin rocket
journal, April 2021


Collective motion in large deviations of active particles
journal, February 2021


Effective equilibrium states in the colored-noise model for active matter II. A unified framework for phase equilibria, structure and mechanical properties
journal, November 2017

  • Wittmann, René; Marconi, U. Marini Bettolo; Maggi, C.
  • Journal of Statistical Mechanics: Theory and Experiment, Vol. 2017, Issue 11
  • DOI: 10.1088/1742-5468/aa8c37

Lane formation in driven mixtures of oppositely charged colloids
journal, January 2011

  • Vissers, Teun; Wysocki, Adam; Rex, Martin
  • Soft Matter, Vol. 7, Issue 6
  • DOI: 10.1039/c0sm01343a

Inertia-induced nucleation-like motility-induced phase separation
journal, January 2021


Current fluctuations of interacting active Brownian particles
journal, December 2018


Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles
journal, August 2016


The effective temperature
journal, November 2011


Time irreversibility in active matter, from micro to macro
journal, January 2022


Entropy Production and Fluctuation Theorems for Active Matter
journal, December 2017