DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Anode–Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules

Abstract

The two major barriers of practical lithium–sulfur batteries are the poor reversibility of lithium-metal anode and sluggish kinetics of sulfur cathode. Here, we report a simple yet cogent, molecular tailoring approach for lithium polysulfides, enabling a synergistic enhancement of anode reversibility and cathode kinetics. In this study, we show that SnI4 coordinates with lithium polysulfides to form soluble complexes, resulting in a Li2SnS3-rich anode interphase layer. As Li2SnS3 is stable against parasitic reactions and has a lower ionic resistance over cycling, the Li plating/stripping efficiency is greatly improved. In addition, the formation of soluble complexes between SnI4 and lithium polysulfides play a non-negligible role in suppressing the clustering behavior of lithium polysulfide molecules, resulting in a significant enhancement in sulfur conversion kinetics under lean electrolyte conditions. The synergistic improvement is validated in anode-free, lean-electrolyte pouch cells with a Li2S cathode that displays capacity retention of 78 % after 100 cycles.

Authors:
 [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. University of Texas, Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE
OSTI Identifier:
2217438
Alternate Identifier(s):
OSTI ID: 1882752; OSTI ID: 1976284
Grant/Contract Number:  
EE0007762
Resource Type:
Accepted Manuscript
Journal Name:
Angewandte Chemie (International Edition)
Additional Journal Information:
Journal Name: Angewandte Chemie (International Edition); Journal Volume: 61; Journal Issue: 35; Journal ID: ISSN 1433-7851
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; batteries; anode-free cells; anode solid electrolyte interphase; anode-free batteries; cathode kinetics; electrolyte additive; pouch cells

Citation Formats

Ren, Yuxun, Bhargav, Amruth, Shin, Woochul, Sul, Hyunki, and Manthiram, Arumugam. Anode–Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules. United States: N. p., 2022. Web. doi:10.1002/anie.202207907.
Ren, Yuxun, Bhargav, Amruth, Shin, Woochul, Sul, Hyunki, & Manthiram, Arumugam. Anode–Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules. United States. https://doi.org/10.1002/anie.202207907
Ren, Yuxun, Bhargav, Amruth, Shin, Woochul, Sul, Hyunki, and Manthiram, Arumugam. Thu . "Anode–Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules". United States. https://doi.org/10.1002/anie.202207907. https://www.osti.gov/servlets/purl/2217438.
@article{osti_2217438,
title = {Anode–Free Lithium–Sulfur Cells Enabled by Rationally Tuning Lithium Polysulfide Molecules},
author = {Ren, Yuxun and Bhargav, Amruth and Shin, Woochul and Sul, Hyunki and Manthiram, Arumugam},
abstractNote = {The two major barriers of practical lithium–sulfur batteries are the poor reversibility of lithium-metal anode and sluggish kinetics of sulfur cathode. Here, we report a simple yet cogent, molecular tailoring approach for lithium polysulfides, enabling a synergistic enhancement of anode reversibility and cathode kinetics. In this study, we show that SnI4 coordinates with lithium polysulfides to form soluble complexes, resulting in a Li2SnS3-rich anode interphase layer. As Li2SnS3 is stable against parasitic reactions and has a lower ionic resistance over cycling, the Li plating/stripping efficiency is greatly improved. In addition, the formation of soluble complexes between SnI4 and lithium polysulfides play a non-negligible role in suppressing the clustering behavior of lithium polysulfide molecules, resulting in a significant enhancement in sulfur conversion kinetics under lean electrolyte conditions. The synergistic improvement is validated in anode-free, lean-electrolyte pouch cells with a Li2S cathode that displays capacity retention of 78 % after 100 cycles.},
doi = {10.1002/anie.202207907},
journal = {Angewandte Chemie (International Edition)},
number = 35,
volume = 61,
place = {United States},
year = {Thu Jul 07 00:00:00 EDT 2022},
month = {Thu Jul 07 00:00:00 EDT 2022}
}

Works referenced in this record:

Rational design of spontaneous reactions for protecting porous lithium electrodes in lithium–sulfur batteries
journal, July 2019


Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal
journal, March 2019

  • Zhao, Meng; Peng, Hong‐Jie; Zhang, Ze‐Wen
  • Angewandte Chemie International Edition, Vol. 58, Issue 12
  • DOI: 10.1002/anie.201812062

Coatable Li 4 SnS 4 Solid Electrolytes Prepared from Aqueous Solutions for All-Solid-State Lithium-Ion Batteries
journal, May 2017


A New Class of Ionically Conducting Fluorinated Ether Electrolytes with High Electrochemical Stability
journal, April 2020

  • Amanchukwu, Chibueze V.; Yu, Zhiao; Kong, Xian
  • Journal of the American Chemical Society, Vol. 142, Issue 16
  • DOI: 10.1021/jacs.9b11056

Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries
journal, September 2021

  • Jin, Cheng‐Bin; Zhang, Xue‐Qiang; Sheng, Ou‐Wei
  • Angewandte Chemie International Edition, Vol. 60, Issue 42
  • DOI: 10.1002/anie.202110589

Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries
journal, June 2021

  • Wang, Peng; Xi, Baojuan; Zhang, Zhengchunyu
  • Angewandte Chemie, Vol. 133, Issue 28
  • DOI: 10.1002/ange.202104053

An Organodiselenide Comediator to Facilitate Sulfur Redox Kinetics in Lithium–Sulfur Batteries
journal, February 2021


Approaching Ultrastable High‐Rate Li–S Batteries through Hierarchically Porous Titanium Nitride Synthesized by Multiscale Phase Separation
journal, September 2018


Phosphorous Pentasulfide as a Novel Additive for High-Performance Lithium-Sulfur Batteries
journal, June 2012

  • Lin, Zhan; Liu, Zengcai; Fu, Wujun
  • Advanced Functional Materials, Vol. 23, Issue 8
  • DOI: 10.1002/adfm.201200696

A reflection on lithium-ion battery cathode chemistry
journal, March 2020


Surface Gelation on Disulfide Electrocatalysts in Lithium–Sulfur Batteries
journal, December 2021

  • Li, Xi‐Yao; Feng, Shuai; Zhao, Meng
  • Angewandte Chemie International Edition, Vol. 61, Issue 7
  • DOI: 10.1002/anie.202114671

Organosulfides: An Emerging Class of Cathode Materials for Rechargeable Lithium Batteries
journal, July 2019


A safe and efficient lithiated silicon-sulfur battery enabled by a bi-functional composite interlayer
journal, March 2020


Shielding Polysulfide Intermediates by an Organosulfur‐Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium–Sulfur Batteries
journal, August 2020

  • Wei, Jun‐Yu; Zhang, Xue‐Qiang; Hou, Li‐Peng
  • Advanced Materials, Vol. 32, Issue 37
  • DOI: 10.1002/adma.202003012

Lithium-Sulfur Batteries: Attaining the Critical Metrics
journal, February 2020


A Cobalt‐ and Manganese‐Free High‐Nickel Layered Oxide Cathode for Long‐Life, Safer Lithium‐Ion Batteries
journal, October 2021

  • Cui, Zehao; Xie, Qiang; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 11, Issue 41
  • DOI: 10.1002/aenm.202102421

Lithium degradation in lithium–sulfur batteries: insights into inventory depletion and interphasial evolution with cycling
journal, January 2020

  • Nanda, Sanjay; Manthiram, Arumugam
  • Energy & Environmental Science, Vol. 13, Issue 8
  • DOI: 10.1039/D0EE01074J

The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries
journal, January 2019

  • Steudel, Ralf; Chivers, Tristram
  • Chemical Society Reviews, Vol. 48, Issue 12
  • DOI: 10.1039/C8CS00826D

Modeling of lithium-sulfur batteries incorporating the effect of Li2S precipitation
journal, December 2016


Highly Solvating Electrolytes for Lithium–Sulfur Batteries
journal, December 2018

  • Gupta, Abhay; Bhargav, Amruth; Manthiram, Arumugam
  • Advanced Energy Materials, Vol. 9, Issue 6
  • DOI: 10.1002/aenm.201803096

Reclaiming Inactive Lithium with a Triiodide/Iodide Redox Couple for Practical Lithium Metal Batteries
journal, September 2021

  • Jin, Cheng‐Bin; Zhang, Xue‐Qiang; Sheng, Ou‐Wei
  • Angewandte Chemie, Vol. 133, Issue 42
  • DOI: 10.1002/ange.202110589

Rechargeable Lithium–Sulfur Batteries
journal, July 2014

  • Manthiram, Arumugam; Fu, Yongzhu; Chung, Sheng-Heng
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500062v

Photoluminescence of antimony(III) and bismuth(III) chloride complexes in solution
journal, November 1991

  • Nikol, Hans; Vogler, Arnd
  • Journal of the American Chemical Society, Vol. 113, Issue 23
  • DOI: 10.1021/ja00023a081

Dual‐Solvent Li‐Ion Solvation Enables High‐Performance Li‐Metal Batteries
journal, May 2021


Atomic Tungsten on Graphene with Unique Coordination Enabling Kinetically Boosted Lithium–Sulfur Batteries
journal, June 2021

  • Wang, Peng; Xi, Baojuan; Zhang, Zhengchunyu
  • Angewandte Chemie International Edition, Vol. 60, Issue 28
  • DOI: 10.1002/anie.202104053

Direct observation of lithium polysulfides in lithium–sulfur batteries using operando X-ray diffraction
journal, May 2017


Tailoring Lithium Polysulfide Coordination and Clustering Behavior through Cationic Electrostatic Competition
journal, April 2021


Sulfide‐Based Solid‐State Electrolytes: Synthesis, Stability, and Potential for All‐Solid‐State Batteries
journal, August 2019


Delineating the Lithium–Electrolyte Interfacial Chemistry and the Dynamics of Lithium Deposition in Lithium–Sulfur Batteries
journal, January 2021


Insights into the Electrochemical Stability and Lithium Conductivity of Li 4 MS 4 (M = Si, Ge, and Sn)
journal, April 2021

  • Chen, Fengjiao; Cheng, Songqi; Liu, Jian-Bo
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 19
  • DOI: 10.1021/acsami.1c03227

Amorphous Lithium Sulfide as Lithium‐Sulfur Battery Cathode with Low Activation Barrier
journal, March 2019

  • Lodovico, Lucas; Milad Hosseini, Seyed; Varzi, Alberto
  • Energy Technology, Vol. 7, Issue 12
  • DOI: 10.1002/ente.201801013

Organosulfur Compounds Enable Uniform Lithium Plating and Long-Term Battery Cycling Stability
journal, March 2020


Evoking High-Donor-Number-Assisted and Organosulfur-Mediated Conversion in Lithium–Sulfur Batteries
journal, December 2020


High-Performance Anode-Free Li–S Batteries with an Integrated Li 2 S–Electrocatalyst Cathode
journal, January 2022


Anode-free, Lean-Electrolyte Lithium-Sulfur Batteries Enabled by Tellurium-Stabilized Lithium Deposition
journal, May 2020


Artificial dual solid-electrolyte interfaces based on in situ organothiol transformation in lithium sulfur battery
journal, May 2021


Activating Inert Metallic Compounds for High‐Rate Lithium–Sulfur Batteries Through In Situ Etching of Extrinsic Metal
journal, January 2019

  • Zhao, Meng; Peng, Hong‐Jie; Zhang, Ze‐Wen
  • Angewandte Chemie, Vol. 131, Issue 12
  • DOI: 10.1002/ange.201812062

Degradation mechanism of hybrid tin-based perovskite solar cells and the critical role of tin (IV) iodide
journal, May 2021


Unifying the clustering kinetics of lithium polysulfides with the nucleation behavior of Li 2 S in lithium–sulfur batteries
journal, January 2021

  • Gupta, Abhay; Manthiram, Arumugam
  • Journal of Materials Chemistry A, Vol. 9, Issue 22
  • DOI: 10.1039/D1TA02779D

Li2S-based anode-free full batteries with modified Cu current collector
journal, September 2020


Surface Gelation on Disulfide Electrocatalysts in Lithium–Sulfur Batteries
journal, December 2021


Achieving three-dimensional lithium sulfide growth in lithium-sulfur batteries using high-donor-number anions
journal, January 2019


Mixed Cationic and Anionic Redox in Ni and Co Free Chalcogen-Based Cathode Chemistry for Li-Ion Batteries
journal, September 2021

  • Nagarajan, Sudhan; Hwang, Sooyeon; Balasubramanian, Mahalingam
  • Journal of the American Chemical Society, Vol. 143, Issue 38
  • DOI: 10.1021/jacs.1c06828