DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries

Abstract

The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstructionmore » layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.« less

Authors:
ORCiD logo [1];  [2];  [1];  [3];  [1];  [4]; ORCiD logo [4]; ORCiD logo [3];  [1]; ORCiD logo [1]
  1. Univ. of Cambridge (United Kingdom); The Faraday Institution (United Kingdom)
  2. Univ. of Cambridge (United Kingdom)
  3. The Faraday Institution (United Kingdom); Univ. of Oxford (United Kingdom)
  4. The Faraday Institution (United Kingdom); Univ. of Liverpool (United Kingdom)
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States). Cell Analysis, Modeling and Prototyping (CAMP) Facility
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1981987
Grant/Contract Number:  
AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 14; Journal Issue: 11; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-ion batteries; degradation; Ni-rich cathode; NMC; electrolyte reactivity; ethylene carbonate; ethyl methyl carbonate; lattice oxygen

Citation Formats

Dose, Wesley M., Temprano, Israel, Allen, Jennifer P., Björklund, Erik, O’Keefe, Christopher A., Li, Weiqun, Mehdi, B. Layla, Weatherup, Robert S., De Volder, Michael F. L., and Grey, Clare P. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. United States: N. p., 2022. Web. doi:10.1021/acsami.1c22812.
Dose, Wesley M., Temprano, Israel, Allen, Jennifer P., Björklund, Erik, O’Keefe, Christopher A., Li, Weiqun, Mehdi, B. Layla, Weatherup, Robert S., De Volder, Michael F. L., & Grey, Clare P. Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries. United States. https://doi.org/10.1021/acsami.1c22812
Dose, Wesley M., Temprano, Israel, Allen, Jennifer P., Björklund, Erik, O’Keefe, Christopher A., Li, Weiqun, Mehdi, B. Layla, Weatherup, Robert S., De Volder, Michael F. L., and Grey, Clare P. Tue . "Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries". United States. https://doi.org/10.1021/acsami.1c22812. https://www.osti.gov/servlets/purl/1981987.
@article{osti_1981987,
title = {Electrolyte Reactivity at the Charged Ni-Rich Cathode Interface and Degradation in Li-Ion Batteries},
author = {Dose, Wesley M. and Temprano, Israel and Allen, Jennifer P. and Björklund, Erik and O’Keefe, Christopher A. and Li, Weiqun and Mehdi, B. Layla and Weatherup, Robert S. and De Volder, Michael F. L. and Grey, Clare P.},
abstractNote = {The chemical and electrochemical reactions at the positive electrode–electrolyte interface in Li-ion batteries are hugely influential on cycle life and safety. Ni-rich layered transition metal oxides exhibit higher interfacial reactivity than their lower Ni-content analogues, reacting via mechanisms that are poorly understood. Here, we study the pivotal role of the electrolyte solvent, specifically cyclic ethylene carbonate (EC) and linear ethyl methyl carbonate (EMC), in determining the interfacial reactivity at charged LiNi0.33Mn0.33Co0.33O2 (NMC111) and LiNi0.8Mn0.1Co0.1O2 (NMC811) cathodes by using both single-solvent model electrolytes and the mixed solvents used in commercial cells. While NMC111 exhibits similar parasitic currents with EC-containing and EC-free electrolytes during high voltage holds in NMC/Li4Ti5O12 (LTO) cells, this is not the case for NMC811. Online gas analysis reveals that the solvent-dependent reactivity for Ni-rich cathodes is related to the extent of lattice oxygen release and accompanying electrolyte decomposition, which is higher for EC-containing than EC-free electrolytes. Combined findings from electrochemical impedance spectroscopy (EIS), TEM, solution NMR, ICP, and XPS reveal that the electrolyte solvent has a profound impact on the degradation of the Ni-rich cathode and the electrolyte. Higher lattice oxygen release with EC-containing electrolytes is coupled with higher cathode interfacial impedance, a thicker oxygen-deficient rock-salt surface reconstruction layer, more electrolyte solvent and salt breakdown, and higher amounts of transition metal dissolution. These processes are suppressed in the EC-free electrolyte, highlighting the incompatibility between Ni-rich cathodes and conventional electrolyte solvents. Finally, new mechanistic insights into the chemical oxidation pathways of electrolyte solvents and, critically, the knock-on chemical and electrochemical reactions that further degrade the electrolyte and electrodes curtailing battery lifetime are provided.},
doi = {10.1021/acsami.1c22812},
journal = {ACS Applied Materials and Interfaces},
number = 11,
volume = 14,
place = {United States},
year = {Tue Mar 08 00:00:00 EST 2022},
month = {Tue Mar 08 00:00:00 EST 2022}
}

Works referenced in this record:

Editors' Choice—Growth of Ambient Induced Surface Impurity Species on Layered Positive Electrode Materials and Impact on Electrochemical Performance
journal, January 2017

  • Faenza, Nicholas V.; Bruce, Lejandro; Lebens-Higgins, Zachary W.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0921714jes

1H chemical shifts in NMR: Part 23, the effect of dimethyl sulphoxideversus chloroform solvent on1H chemical shifts
journal, January 2006

  • Abraham, Raymond J.; Byrne, Jonathan J.; Griffiths, Lee
  • Magnetic Resonance in Chemistry, Vol. 44, Issue 5
  • DOI: 10.1002/mrc.1747

Effect of electrolyte composition on rock salt surface degradation in NMC cathodes during high-voltage potentiostatic holds
journal, January 2019


Cycle-Induced Interfacial Degradation and Transition-Metal Cross-Over in LiNi0.8Mn0.1Co0.1O2–Graphite Cells
journal, February 2022


NMR Chemical Shifts of Trace Impurities: Industrially Preferred Solvents Used in Process and Green Chemistry
journal, February 2016

  • Babij, Nicholas R.; McCusker, Elizabeth O.; Whiteker, Gregory T.
  • Organic Process Research & Development, Vol. 20, Issue 3
  • DOI: 10.1021/acs.oprd.5b00417

The influence of different conducting salts on the metal dissolution and capacity fading of NCM cathode material
journal, July 2014


A non-aqueous sodium hexafluorophosphate-based electrolyte degradation study: Formation and mitigation of hydrofluoric acid
journal, January 2020


Ambient Storage Derived Surface Contamination of NCM811 and NCM111: Performance Implications and Mitigation Strategies
journal, January 2019

  • Sicklinger, Johannes; Metzger, Michael; Beyer, Hans
  • Journal of The Electrochemical Society, Vol. 166, Issue 12
  • DOI: 10.1149/2.0011912jes

Capacity fading of LixMn2O4 spinel electrodes studied by XRD and electroanalytical techniques
journal, September 1999


Studies of Gas Generation, Gas Consumption and Impedance Growth in Li-Ion Cells with Carbonate or Fluorinated Electrolytes Using the Pouch Bag Method
journal, December 2016

  • Xiong, D. J.; Ellis, L. D.; Petibon, Remi
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1091702jes

Alternating Current Impedance Electrochemical Modeling of Lithium-Ion Positive Electrodes
journal, January 2005

  • Dees, Dennis; Gunen, Evren; Abraham, Daniel
  • Journal of The Electrochemical Society, Vol. 152, Issue 7
  • DOI: 10.1149/1.1928169

Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries
journal, October 2018


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist
journal, May 2010

  • Fulmer, Gregory R.; Miller, Alexander J. M.; Sherden, Nathaniel H.
  • Organometallics, Vol. 29, Issue 9
  • DOI: 10.1021/om100106e

Surface Degradation and Chemical Electrolyte Oxidation Induced by the Oxygen Released from Layered Oxide Cathodes in Li−Ion Batteries
journal, March 2019

  • Leanza, Daniela; Mirolo, Marta; Vaz, Carlos A. F.
  • Batteries & Supercaps, Vol. 2, Issue 5
  • DOI: 10.1002/batt.201800126

Origin of H 2 Evolution in LIBs: H 2 O Reduction vs. Electrolyte Oxidation
journal, January 2016

  • Metzger, Michael; Strehle, Benjamin; Solchenbach, Sophie
  • Journal of The Electrochemical Society, Vol. 163, Issue 5
  • DOI: 10.1149/2.1151605jes

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Li2CO3 decomposition in Li-ion batteries induced by the electrochemical oxidation of the electrolyte and of electrolyte impurities
journal, June 2020


Electrolyte and SEI Decomposition Reactions of Transition Metal Ions Investigated by On-Line Electrochemical Mass Spectrometry
journal, January 2018

  • Solchenbach, Sophie; Hong, Gloria; Freiberg, Anna Teresa Sophie
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.0511814jes

Determining oxidative stability of battery electrolytes: validity of common electrochemical stability window (ESW) data and alternative strategies
journal, January 2017

  • Kasnatscheew, J.; Streipert, B.; Röser, S.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 24
  • DOI: 10.1039/C7CP03072J

Singlet Oxygen Reactivity with Carbonate Solvents Used for Li-Ion Battery Electrolytes
journal, October 2018

  • Freiberg, Anna T. S.; Roos, Matthias K.; Wandt, Johannes
  • The Journal of Physical Chemistry A, Vol. 122, Issue 45
  • DOI: 10.1021/acs.jpca.8b08079

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception
journal, January 2018

  • Peljo, Pekka; Girault, Hubert H.
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE01286E

Surface Chemistry Dependence on Aluminum Doping in Ni-rich LiNi0.8Co0.2−yAlyO2 Cathodes
journal, November 2019

  • Lebens-Higgins, Zachary W.; Halat, David M.; Faenza, Nicholas V.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-019-53932-6

Electrolytes and Interphases in Li-Ion Batteries and Beyond
journal, October 2014


Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

NMR Study of the Degradation Products of Ethylene Carbonate in Silicon–Lithium Ion Batteries
journal, October 2019

  • Jin, Yanting; Kneusels, Nis-Julian H.; Grey, Clare P.
  • The Journal of Physical Chemistry Letters, Vol. 10, Issue 20
  • DOI: 10.1021/acs.jpclett.9b02454

Optical Properties of Polyethylene: Measurement and Applications
journal, July 1980

  • Painter, L. R.; Arakawa, E. T.; Williams, M. W.
  • Radiation Research, Vol. 83, Issue 1
  • DOI: 10.2307/3575254

Perspective—Surface Reactions of Electrolyte with LiNi x Co y Mn z O 2 Cathodes for Lithium Ion Batteries
journal, June 2020

  • Heiskanen, Satu Kristiina; Laszczynski, Nina; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 167, Issue 10
  • DOI: 10.1149/1945-7111/ab981c

Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy
journal, January 2013

  • Nie, Mengyun; Chalasani, Dinesh; Abraham, Daniel P.
  • The Journal of Physical Chemistry C, Vol. 117, Issue 3, p. 1257-1267
  • DOI: 10.1021/jp3118055

Evaluating the High-Voltage Stability of Conductive Carbon and Ethylene Carbonate with Various Lithium Salts
journal, December 2020

  • Metzger, Michael; Walke, Patrick; Solchenbach, Sophie
  • Journal of The Electrochemical Society, Vol. 167, Issue 16
  • DOI: 10.1149/1945-7111/abcabd

Nickel, Manganese, and Cobalt Dissolution from Ni-Rich NMC and Their Effects on NMC622-Graphite Cells
journal, January 2019

  • Jung, Roland; Linsenmann, Fabian; Thomas, Rowena
  • Journal of The Electrochemical Society, Vol. 166, Issue 2
  • DOI: 10.1149/2.1151902jes

Operando Monitoring of Early Ni-mediated Surface Reconstruction in Layered Lithiated Ni–Co–Mn Oxides
journal, June 2017

  • Streich, Daniel; Erk, Christoph; Guéguen, Aurelie
  • The Journal of Physical Chemistry C, Vol. 121, Issue 25
  • DOI: 10.1021/acs.jpcc.7b02303

Electrochemical Oxidation of Lithium Carbonate Generates Singlet Oxygen
journal, April 2018

  • Mahne, Nika; Renfrew, Sara E.; McCloskey, Bryan D.
  • Angewandte Chemie International Edition, Vol. 57, Issue 19
  • DOI: 10.1002/anie.201802277

Cycling Behavior of NCM523/Graphite Lithium-Ion Cells in the 3–4.4 V Range: Diagnostic Studies of Full Cells and Harvested Electrodes
journal, September 2016

  • Gilbert, James A.; Bareño, Javier; Spila, Timothy
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0081701jes

Thermal Decomposition of LiPF[sub 6]-Based Electrolytes for Lithium-Ion Batteries
journal, January 2005

  • Campion, Christopher L.; Li, Wentao; Lucht, Brett L.
  • Journal of The Electrochemical Society, Vol. 152, Issue 12
  • DOI: 10.1149/1.2083267

Theoretical Investigations on Oxidative Stability of Solvents and Oxidative Decomposition Mechanism of Ethylene Carbonate for Lithium Ion Battery Use
journal, December 2009

  • Xing, Lidan; Li, Weishan; Wang, Chaoyang
  • The Journal of Physical Chemistry B, Vol. 113, Issue 52
  • DOI: 10.1021/jp9074064

Electrolyte Oxidation Pathways in Lithium-Ion Batteries
journal, July 2020

  • Rinkel, Bernardine L. D.; Hall, David S.; Temprano, Israel
  • Journal of the American Chemical Society, Vol. 142, Issue 35
  • DOI: 10.1021/jacs.0c06363

Enabling linear alkyl carbonate electrolytes for high voltage Li-ion cells
journal, October 2016


Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR
journal, January 2011

  • Dupre, N.; Cuisinier, M.; Guyomard, D.
  • Interface magazine, Vol. 20, Issue 3
  • DOI: 10.1149/2.F06113if

Electrolyte System for High Voltage Li-Ion Cells
journal, January 2016

  • Petibon, Remi; Xia, Jian; Ma, Lin
  • Journal of The Electrochemical Society, Vol. 163, Issue 13
  • DOI: 10.1149/2.0321613jes

Transition Metal Dissolution, Ion Migration, Electrocatalytic Reduction and Capacity Loss in Lithium-Ion Full Cells
journal, December 2016

  • Gilbert, James A.; Shkrob, Ilya A.; Abraham, Daniel P.
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1111702jes

Evaluation of Electrolyte Oxidation Stability on Charged LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Surface through Potentiostatic Holds
journal, January 2016

  • Tornheim, Adam; Trask, Stephen E.; Zhang, Zhengcheng
  • Journal of The Electrochemical Society, Vol. 163, Issue 8
  • DOI: 10.1149/2.1051608jes

Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate
journal, October 2017

  • Jin, Yanting; Kneusels, Nis-Julian H.; Magusin, Pieter C. M. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b06834

Overlooked electrolyte destabilization by manganese (II) in lithium-ion batteries
journal, July 2019


Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries
journal, August 2017

  • Giordano, Livia; Karayaylali, Pinar; Yu, Yang
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01655

Surface Characterization of Electrodes from High Power Lithium-Ion Batteries
journal, January 2002

  • Andersson, A. M.; Abraham, D. P.; Haasch, R.
  • Journal of The Electrochemical Society, Vol. 149, Issue 10
  • DOI: 10.1149/1.1505636

Computation of Thermodynamic Oxidation Potentials of Organic Solvents Using Density Functional Theory
journal, January 2001

  • Zhang, Xuerong; Pugh, James K.; Ross, Philip N.
  • Journal of The Electrochemical Society, Vol. 148, Issue 5
  • DOI: 10.1149/1.1362546

Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy
journal, January 2020

  • Zhang, Yirui; Katayama, Yu; Tatara, Ryoichi
  • Energy & Environmental Science, Vol. 13, Issue 1
  • DOI: 10.1039/C9EE02543J

The Role of Additives in Improving Performance in High Voltage Lithium-Ion Batteries with Potentiostatic Holds
journal, January 2017

  • Tornheim, Adam; He, Meinan; Su, Chi-Cheung
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0471701jes

On Leakage Current Measured at High Cell Voltages in Lithium-Ion Batteries
journal, December 2016

  • Vadivel, Nicole R.; Ha, Seungbum; He, Meinan
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1341702jes

The influence of electrochemical cycling protocols on capacity loss in nickel-rich lithium-ion batteries
journal, January 2021

  • Dose, Wesley M.; Morzy, Jędrzej K.; Mahadevegowda, Amoghavarsha
  • Journal of Materials Chemistry A, Vol. 9, Issue 41
  • DOI: 10.1039/D1TA06324C

Effect of CO2 on layered Li1+zNi1−x−yCoxMyO2 (M=Al, Mn) cathode materials for lithium ion batteries
journal, March 2007


Mechanistic insights into lithium ion battery electrolyte degradation – a quantitative NMR study
journal, January 2016

  • Wiemers-Meyer, S.; Winter, M.; Nowak, S.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05276B

Transition Metal Dissolution and Degradation in NMC811-Graphite Electrochemical Cells
journal, June 2021

  • Ruff, Zachary; Xu, Chao; Grey, Clare P.
  • Journal of The Electrochemical Society, Vol. 168, Issue 6
  • DOI: 10.1149/1945-7111/ac0359

Coupled LiPF 6 Decomposition and Carbonate Dehydrogenation Enhanced by Highly Covalent Metal Oxides in High-Energy Li-Ion Batteries
journal, October 2018

  • Yu, Yang; Karayaylali, Pinar; Katayama, Yu
  • The Journal of Physical Chemistry C, Vol. 122, Issue 48
  • DOI: 10.1021/acs.jpcc.8b07848

Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
journal, September 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 19
  • DOI: 10.1021/acs.jpclett.7b01927

The study of the anodic stability of alkyl carbonate solutions by in situ FTIR spectroscopy, EQCM, NMR and MS
journal, February 2001


Effect of Ambient Storage on the Degradation of Ni-Rich Positive Electrode Materials (NMC811) for Li-Ion Batteries
journal, January 2018

  • Jung, Roland; Morasch, Robert; Karayaylali, Pinar
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0401802jes

Toward Reliable Values of Electrochemical Stability Limits for Electrolytes
journal, January 1999

  • Xu, Kang
  • Journal of The Electrochemical Society, Vol. 146, Issue 11
  • DOI: 10.1149/1.1392609

On-Line Electrochemical Mass Spectrometry Investigations on the Gassing Behavior of Li 4 Ti 5 O 12 Electrodes and Its Origins
journal, January 2014

  • Bernhard, Rebecca; Meini, Stefano; Gasteiger, Hubert A.
  • Journal of The Electrochemical Society, Vol. 161, Issue 4
  • DOI: 10.1149/2.013404jes

A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
journal, January 2018

  • Kim, Junhyeok; Ma, Hyunsoo; Cha, Hyungyeon
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C8EE00155C

Quantifying, Understanding and Evaluating the Effects of Gas Consumption in Lithium-Ion Cells
journal, January 2017

  • Ellis, L. D.; Allen, J. P.; Thompson, L. M.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0191714jes

Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries
journal, June 2019

  • Li, Wangda; Dolocan, Andrei; Li, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901152

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

A review of gas evolution in lithium ion batteries
journal, May 2020


Hydrolysis of Ethylene Carbonate with Water and Hydroxide under Battery Operating Conditions
journal, January 2016

  • Metzger, Michael; Strehle, Benjamin; Solchenbach, Sophie
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0411607jes