DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Resolving Chemical and Spatial Heterogeneities at Complex Electrochemical Interfaces in Li-Ion Batteries

Abstract

The high specific capacities of Ni-rich transition metal oxides have garnered immense interest for improving the energy density of Li-ion batteries (LIBs). Despite the potential of these materials, Ni-rich cathodes suffer from interfacial instabilities that lead to crystallographic rearrangement of the active material surface as well as the formation of a cathode electrolyte interphase (CEI) layer on the composite during electrochemical cycling. While changes in crystallographic structure can be detected with diffraction-based methods, probing the chemistry of the disordered, heterogeneous CEI layer is challenging. In this work, we use a combination of ex situ solid-state nuclear magnetic resonance (SSNMR) spectroscopy and X-ray photoemission electron microscopy (XPEEM) to provide chemical and spatial information, on the nanometer length scale, on the CEI deposited on LiNi0.8Mn0.1Co0.1O2 (NMC811) composite cathode films. XPEEM elemental maps offer insight into the lateral arrangement of the electrolyte decomposition products that comprise the CEI and paramagnetic interactions (assessed with electron paramagnetic resonance (EPR) and relaxation measurements) in 13C SSNMR provide information on the radial arrangement of the CEI from the NMC811 particles outward. Using this approach, here we find that LiF, Li2CO3, and carboxy-containing structures are directly appended to NMC811 active particles, whereas soluble species detected during in situmore » 1H and 19F solution NMR experiments (e.g., alkyl carbonates, HF, and vinyl compounds) are randomly deposited on the composite surface. We show that the combined approach of ex situ SSNMR and XPEEM, in conjunction with in situ solution NMR, allows spatially-resolved, molecular-level characterization of paramagnetic surfaces and new insights into electrolyte oxidation mechanisms in porous electrode films.« less

Authors:
 [1];  [1]; ORCiD logo [2];  [1]; ORCiD logo [1]
  1. Columbia Univ., New York, NY (United States)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF)
OSTI Identifier:
1841112
Report Number(s):
BNL-222610-2022-JAAM
Journal ID: ISSN 0897-4756
Grant/Contract Number:  
SC0012704; CBET-2045262; 2021278071
Resource Type:
Accepted Manuscript
Journal Name:
Chemistry of Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: 1; Journal ID: ISSN 0897-4756
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Composites; Electrodes; Electron paramagnetic resonance spectroscopy; Nuclear magnetic resonance spectroscopy; Electrolytes

Citation Formats

Hestenes, Julia C., May, Richard, Sadowski, Jerzy T., Munich, Naiara, and Marbella, Lauren E. Resolving Chemical and Spatial Heterogeneities at Complex Electrochemical Interfaces in Li-Ion Batteries. United States: N. p., 2021. Web. doi:10.1021/acs.chemmater.1c03185.
Hestenes, Julia C., May, Richard, Sadowski, Jerzy T., Munich, Naiara, & Marbella, Lauren E. Resolving Chemical and Spatial Heterogeneities at Complex Electrochemical Interfaces in Li-Ion Batteries. United States. https://doi.org/10.1021/acs.chemmater.1c03185
Hestenes, Julia C., May, Richard, Sadowski, Jerzy T., Munich, Naiara, and Marbella, Lauren E. Tue . "Resolving Chemical and Spatial Heterogeneities at Complex Electrochemical Interfaces in Li-Ion Batteries". United States. https://doi.org/10.1021/acs.chemmater.1c03185. https://www.osti.gov/servlets/purl/1841112.
@article{osti_1841112,
title = {Resolving Chemical and Spatial Heterogeneities at Complex Electrochemical Interfaces in Li-Ion Batteries},
author = {Hestenes, Julia C. and May, Richard and Sadowski, Jerzy T. and Munich, Naiara and Marbella, Lauren E.},
abstractNote = {The high specific capacities of Ni-rich transition metal oxides have garnered immense interest for improving the energy density of Li-ion batteries (LIBs). Despite the potential of these materials, Ni-rich cathodes suffer from interfacial instabilities that lead to crystallographic rearrangement of the active material surface as well as the formation of a cathode electrolyte interphase (CEI) layer on the composite during electrochemical cycling. While changes in crystallographic structure can be detected with diffraction-based methods, probing the chemistry of the disordered, heterogeneous CEI layer is challenging. In this work, we use a combination of ex situ solid-state nuclear magnetic resonance (SSNMR) spectroscopy and X-ray photoemission electron microscopy (XPEEM) to provide chemical and spatial information, on the nanometer length scale, on the CEI deposited on LiNi0.8Mn0.1Co0.1O2 (NMC811) composite cathode films. XPEEM elemental maps offer insight into the lateral arrangement of the electrolyte decomposition products that comprise the CEI and paramagnetic interactions (assessed with electron paramagnetic resonance (EPR) and relaxation measurements) in 13C SSNMR provide information on the radial arrangement of the CEI from the NMC811 particles outward. Using this approach, here we find that LiF, Li2CO3, and carboxy-containing structures are directly appended to NMC811 active particles, whereas soluble species detected during in situ 1H and 19F solution NMR experiments (e.g., alkyl carbonates, HF, and vinyl compounds) are randomly deposited on the composite surface. We show that the combined approach of ex situ SSNMR and XPEEM, in conjunction with in situ solution NMR, allows spatially-resolved, molecular-level characterization of paramagnetic surfaces and new insights into electrolyte oxidation mechanisms in porous electrode films.},
doi = {10.1021/acs.chemmater.1c03185},
journal = {Chemistry of Materials},
number = 1,
volume = 34,
place = {United States},
year = {Tue Dec 28 00:00:00 EST 2021},
month = {Tue Dec 28 00:00:00 EST 2021}
}

Works referenced in this record:

Review—Recent Advances and Remaining Challenges for Lithium Ion Battery Cathodes: I. Nickel-Rich, LiNi
journal, December 2016

  • Schipper, Florian; Erickson, Evan M.; Erk, Christoph
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0351701jes

Solid Electrolyte Interphase Growth and Capacity Loss in Silicon Electrodes
journal, June 2016

  • Michan, Alison L.; Divitini, Giorgio; Pell, Andrew J.
  • Journal of the American Chemical Society, Vol. 138, Issue 25
  • DOI: 10.1021/jacs.6b02882

Breaking Free from Cobalt Reliance in Lithium-Ion Batteries
journal, September 2020


Chemomechanical interplay of layered cathode materials undergoing fast charging in lithium batteries
journal, November 2018


Magnetic properties of LixNiyMnyCo1−2yO2 (0.2≤1−2y≤0.5, 0≤x≤1)
journal, April 2012


Crossover Effects in Batteries with High‐Nickel Cathodes and Lithium‐Metal Anodes
journal, February 2021

  • Langdon, Jayse; Manthiram, Arumugam
  • Advanced Functional Materials, Vol. 31, Issue 17
  • DOI: 10.1002/adfm.202010267

Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study
journal, August 2020


Insights into the Cathode–Electrolyte Interphases of High-Energy-Density Cathodes in Lithium-Ion Batteries
journal, March 2020

  • Erickson, Evan M.; Li, Wangda; Dolocan, Andrei
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 14
  • DOI: 10.1021/acsami.0c00900

The Role of Oxygen Release from Li- and Mn-Rich Layered Oxides during the First Cycles Investigated by On-Line Electrochemical Mass Spectrometry
journal, December 2016

  • Strehle, Benjamin; Kleiner, Karin; Jung, Roland
  • Journal of The Electrochemical Society, Vol. 164, Issue 2
  • DOI: 10.1149/2.1001702jes

Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries
journal, March 2008


Monitoring local redox processes in LiNi 0.5 Mn 1.5 O 4 battery cathode material by in operando EPR spectroscopy
journal, January 2018

  • Niemöller, Arvid; Jakes, Peter; Eurich, Svitlana
  • The Journal of Chemical Physics, Vol. 148, Issue 1
  • DOI: 10.1063/1.5008251

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Anodic Oxidation of Conductive Carbon and Ethylene Carbonate in High-Voltage Li-Ion Batteries Quantified by On-Line Electrochemical Mass Spectrometry
journal, January 2015

  • Metzger, Michael; Marino, Cyril; Sicklinger, Johannes
  • Journal of The Electrochemical Society, Vol. 162, Issue 7
  • DOI: 10.1149/2.0951506jes

Structural Stability of LiNiO 2 Cycled above 4.2 V
journal, April 2017


NMR Studies of Cathode Materials for Lithium-Ion Rechargeable Batteries
journal, October 2004

  • Grey, Clare P.; Dupré, Nicolas
  • Chemical Reviews, Vol. 104, Issue 10
  • DOI: 10.1021/cr020734p

Performance and design considerations for lithium excess layered oxide positive electrode materials for lithium ion batteries
journal, January 2016

  • Hy, Sunny; Liu, Haodong; Zhang, Minghao
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03573B

Electrode–Electrolyte Interface in Li-Ion Batteries: Current Understanding and New Insights
journal, October 2015

  • Gauthier, Magali; Carney, Thomas J.; Grimaud, Alexis
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 22
  • DOI: 10.1021/acs.jpclett.5b01727

Probing Dynamic Processes in Lithium-Ion Batteries by In Situ NMR Spectroscopy: Application to Li 1.08 Mn 1.92 O 4 Electrodes
journal, October 2015

  • Zhou, Lina; Leskes, Michal; Liu, Tao
  • Angewandte Chemie International Edition, Vol. 54, Issue 49
  • DOI: 10.1002/anie.201507632

Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries
journal, January 2018

  • Xu, Zhengrui; Rahman, Muhammad Mominur; Mu, Linqin
  • Journal of Materials Chemistry A, Vol. 6, Issue 44
  • DOI: 10.1039/C8TA06875E

Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries
journal, November 2008

  • Shinova, E.; Stoyanova, R.; Zhecheva, E.
  • Solid State Ionics, Vol. 179, Issue 38, p. 2198-2208
  • DOI: 10.1016/j.ssi.2008.07.026

Paramagnetic NMR in solution and the solid state
journal, April 2019

  • Pell, Andrew J.; Pintacuda, Guido; Grey, Clare P.
  • Progress in Nuclear Magnetic Resonance Spectroscopy, Vol. 111
  • DOI: 10.1016/j.pnmrs.2018.05.001

Understanding Fluoroethylene Carbonate and Vinylene Carbonate Based Electrolytes for Si Anodes in Lithium Ion Batteries with NMR Spectroscopy
journal, July 2018

  • Jin, Yanting; Kneusels, Nis-Julian H.; Marbella, Lauren E.
  • Journal of the American Chemical Society, Vol. 140, Issue 31
  • DOI: 10.1021/jacs.8b03408

Probing Depth-Dependent Transition-Metal Redox of Lithium Nickel, Manganese, and Cobalt Oxides in Li-Ion Batteries
journal, December 2020

  • Yu, Yang; Karayaylali, Pinar; Giordano, Livia
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 50
  • DOI: 10.1021/acsami.0c16285

Identifying the components of the solid–electrolyte interphase in Li-ion batteries
journal, August 2019


What Can We Learn from Solid State NMR on the Electrode-Electrolyte Interface?
journal, June 2018


Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Aging of the LiNi[sub 1∕2]Mn[sub 1∕2]O[sub 2] Positive Electrode Interface in Electrolyte
journal, January 2009

  • Dupré, Nicolas; Martin, Jean-Frédéric; Oliveri, Julie
  • Journal of The Electrochemical Society, Vol. 156, Issue 5
  • DOI: 10.1149/1.3098494

Operando EPR for Simultaneous Monitoring of Anionic and Cationic Redox Processes in Li-Rich Metal Oxide Cathodes
journal, August 2017

  • Tang, Mingxue; Dalzini, Annalisa; Li, Xiang
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 17
  • DOI: 10.1021/acs.jpclett.7b01425

LiNi 0.4 Mn 1.6 O 4 /Electrolyte and Carbon Black/Electrolyte High Voltage Interfaces: To Evidence the Chemical and Electronic Contributions of the Solvent on the Cathode-Electrolyte Interface Formation
journal, January 2012

  • Demeaux, Julien; Caillon-Caravanier, Magaly; Galiano, Hervé
  • Journal of The Electrochemical Society, Vol. 159, Issue 11
  • DOI: 10.1149/2.052211jes

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

A battery cell for in situ NMR measurements of liquid electrolytes
journal, January 2017

  • Wiemers-Meyer, Simon; Winter, Martin; Nowak, Sascha
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 7
  • DOI: 10.1039/C6CP08653E

Instability of PVDF Binder in the LiFePO 4 versus Li 4 Ti 5 O 12 Li‐Ion Battery Cell
journal, December 2020

  • Leanza, Daniela; Vaz, C. A. F.; Novák, Petr
  • Helvetica Chimica Acta, Vol. 104, Issue 1
  • DOI: 10.1002/hlca.202000183

Operando Monitoring of Early Ni-mediated Surface Reconstruction in Layered Lithiated Ni–Co–Mn Oxides
journal, June 2017

  • Streich, Daniel; Erk, Christoph; Guéguen, Aurelie
  • The Journal of Physical Chemistry C, Vol. 121, Issue 25
  • DOI: 10.1021/acs.jpcc.7b02303

Solid electrolyte interphase on graphite Li-ion battery anodes studied by soft X-ray spectroscopy
journal, January 2004

  • Augustsson, A.; Herstedt, M.; Guo, J. -H.
  • Phys. Chem. Chem. Phys., Vol. 6, Issue 16
  • DOI: 10.1039/B313434B

Reversible Deposition and Stripping of the Cathode Electrolyte Interphase on Li2RuO3
journal, August 2020

  • Hestenes, Julia C.; Ells, Andrew W.; Navarro Goldaraz, Mateo
  • Frontiers in Chemistry, Vol. 8
  • DOI: 10.3389/fchem.2020.00681

Degradation Mechanisms and Mitigation Strategies of Nickel-Rich NMC-Based Lithium-Ion Batteries
journal, October 2019


Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries
journal, August 2020


The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Sample Dependence of Magnetism in the Next-Generation Cathode Material LiNi 0.8 Mn 0.1 Co 0.1 O 2
journal, December 2020


Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2
journal, January 2013

  • Carroll, Kyler J.; Qian, Danna; Fell, Chris
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 26
  • DOI: 10.1039/c3cp51927a

Electrolyte Oxidation Pathways in Lithium-Ion Batteries
journal, July 2020

  • Rinkel, Bernardine L. D.; Hall, David S.; Temprano, Israel
  • Journal of the American Chemical Society, Vol. 142, Issue 35
  • DOI: 10.1021/jacs.0c06363

Decomposition Reactions of Anode Solid Electrolyte Interphase (SEI) Components with LiPF 6
journal, October 2017

  • Parimalam, Bharathy S.; MacIntosh, Alex D.; Kadam, Rahul
  • The Journal of Physical Chemistry C, Vol. 121, Issue 41
  • DOI: 10.1021/acs.jpcc.7b08433

Cation Ordering and Redox Chemistry of Layered Ni-Rich Li x Ni 1–2 y Co y Mn y O 2 : An Operando Raman Spectroscopy Study
journal, November 2019


Detection of surface layers using 7Li MAS NMR
journal, January 2008

  • Dupré, Nicolas; Martin, Jean-Frédéric; Guyomard, Dominique
  • Journal of Materials Chemistry, Vol. 18, Issue 36
  • DOI: 10.1039/b807778a

Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2O
journal, January 2005


Cross Talk between Transition Metal Cathode and Li Metal Anode: Unraveling Its Influence on the Deposition/Dissolution Behavior and Morphology of Lithium
journal, April 2019

  • Betz, Johannes; Brinkmann, Jan‐Paul; Nölle, Roman
  • Advanced Energy Materials, Vol. 9, Issue 21
  • DOI: 10.1002/aenm.201900574

Electrode/Electrolyte Interface Studies in Lithium Batteries Using NMR
journal, January 2011

  • Dupre, N.; Cuisinier, M.; Guyomard, D.
  • Interface magazine, Vol. 20, Issue 3
  • DOI: 10.1149/2.F06113if

A high performance layered transition metal oxide cathode material obtained by simultaneous aluminum and iron cationic substitution
journal, December 2014


Identifying the Structural Basis for the Increased Stability of the Solid Electrolyte Interphase Formed on Silicon with the Additive Fluoroethylene Carbonate
journal, October 2017

  • Jin, Yanting; Kneusels, Nis-Julian H.; Magusin, Pieter C. M. M.
  • Journal of the American Chemical Society, Vol. 139, Issue 42
  • DOI: 10.1021/jacs.7b06834

On the gassing behavior of lithium-ion batteries with NCM523 cathodes
journal, August 2016

  • Berkes, Balázs B.; Schiele, Alexander; Sommer, Heino
  • Journal of Solid State Electrochemistry, Vol. 20, Issue 11
  • DOI: 10.1007/s10008-016-3362-9

Evolution of the LiFePO4 positive electrode interface along cycling monitored by MAS NMR
journal, February 2013


Layered Li x Ni y Mn y Co 1-2 y O 2 Cathodes for Lithium Ion Batteries:  Understanding Local Structure via Magnetic Properties
journal, September 2007

  • Chernova, Natasha A.; Ma, Miaomiao; Xiao, Jie
  • Chemistry of Materials, Vol. 19, Issue 19
  • DOI: 10.1021/cm0708867

Chemical Reactivity Descriptor for the Oxide-Electrolyte Interface in Li-Ion Batteries
journal, August 2017

  • Giordano, Livia; Karayaylali, Pinar; Yu, Yang
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 16
  • DOI: 10.1021/acs.jpclett.7b01655

Leveraging Cation Identity to Engineer Solid Electrolyte Interphases for Rechargeable Lithium Metal Anodes
journal, November 2020


An Outlook on Lithium Ion Battery Technology
journal, September 2017


Revealing electrolyte oxidation via carbonate dehydrogenation on Ni-based oxides in Li-ion batteries by in situ Fourier transform infrared spectroscopy
journal, January 2020

  • Zhang, Yirui; Katayama, Yu; Tatara, Ryoichi
  • Energy & Environmental Science, Vol. 13, Issue 1
  • DOI: 10.1039/C9EE02543J

Rechargeable Batteries from the Perspective of the Electron Spin
journal, November 2020


On the Performance of LiNi[sub 1/3]Mn[sub 1/3]Co[sub 1/3]O[sub 2] Nanoparticles as a Cathode Material for Lithium-Ion Batteries
journal, January 2009

  • Sclar, Hadar; Kovacheva, Daniela; Zhecheva, Ekaterina
  • Journal of The Electrochemical Society, Vol. 156, Issue 11
  • DOI: 10.1149/1.3212850

Revealing the Dual Surface Reactions on a HE-NCM Li-Ion Battery Cathode and Their Impact on the Surface Chemistry of the Counter Electrode
journal, January 2019

  • Leanza, Daniela; Vaz, Carlos A. F.; Melinte, Georgian
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 6
  • DOI: 10.1021/acsami.8b19511

Post Mortem and Operando XPEEM: a Surface-Sensitive Tool for Studying Single Particles in Li-Ion Battery Composite Electrodes
journal, January 2020


Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries
journal, April 2018

  • You, Ya; Celio, Hugo; Li, Jianyu
  • Angewandte Chemie International Edition, Vol. 57, Issue 22
  • DOI: 10.1002/anie.201801533

Voltage Dependent Solid Electrolyte Interphase Formation in Silicon Electrodes: Monitoring the Formation of Organic Decomposition Products
journal, December 2015


Anode-originated SEI migration contributes to formation of cathode-electrolyte interphase layer
journal, January 2018


Mechanistic insights into lithium ion battery electrolyte degradation – a quantitative NMR study
journal, January 2016

  • Wiemers-Meyer, S.; Winter, M.; Nowak, S.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 38
  • DOI: 10.1039/C6CP05276B

Interfacial properties in energy storage systems studied by soft x-ray absorption spectroscopy and resonant inelastic x-ray scattering
journal, April 2020

  • Li, Qinghao; Yan, Shishen; Yang, Wanli
  • The Journal of Chemical Physics, Vol. 152, Issue 14
  • DOI: 10.1063/5.0003311

Quantitative MAS NMR characterization of the LiMn1/2Ni1/2O2 electrode/electrolyte interphase
journal, April 2012


Coupled LiPF 6 Decomposition and Carbonate Dehydrogenation Enhanced by Highly Covalent Metal Oxides in High-Energy Li-Ion Batteries
journal, October 2018

  • Yu, Yang; Karayaylali, Pinar; Katayama, Yu
  • The Journal of Physical Chemistry C, Vol. 122, Issue 48
  • DOI: 10.1021/acs.jpcc.8b07848

Multi-length-scale x-ray spectroscopies for determination of surface reactivity at high voltages of LiNi 0.8 Co 0.15 Al 0.05 O 2 vs Li 4 Ti 5 O 12
journal, May 2020

  • Mirolo, Marta; Vaz, Carlos A. F.; Novák, Petr
  • The Journal of Chemical Physics, Vol. 152, Issue 18
  • DOI: 10.1063/5.0006269

Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries
journal, January 2017

  • Yan, Pengfei; Zheng, Jianming; Gu, Meng
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14101

Transition metal dissolution and deposition in Li-ion batteries investigated by operando X-ray absorption spectroscopy
journal, January 2016

  • Wandt, Johannes; Freiberg, Anna; Thomas, Rowena
  • Journal of Materials Chemistry A, Vol. 4, Issue 47
  • DOI: 10.1039/C6TA08865A

Evolution of Structure and Lithium Dynamics in LiNi 0.8 Mn 0.1 Co 0.1 O 2 (NMC811) Cathodes during Electrochemical Cycling
journal, March 2019


Fluoroethylene Carbonate and Vinylene Carbonate Reduction: Understanding Lithium-Ion Battery Electrolyte Additives and Solid Electrolyte Interphase Formation
journal, November 2016


High-Frequency Electron Paramagnetic Resonance Analysis of the Oxidation State and Local Structure of Ni and Mn Ions in Ni,Mn-Codoped LiCoO2
journal, February 2010

  • Stoyanova, R.; Barra, A.-L.; Yoncheva, M.
  • Inorganic Chemistry, Vol. 49, Issue 4, p. 1932-1941
  • DOI: 10.1021/ic902351u

Soft x-ray absorption spectroscopy. Electronic and morphological structure of poly(vinylidene fluoride)
journal, August 1980

  • Williams, R. S.; Denley, D.; Shirley, D. A.
  • Journal of the American Chemical Society, Vol. 102, Issue 18
  • DOI: 10.1021/ja00538a003

Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Kinetic Stability of Bulk LiNiO 2 and Surface Degradation by Oxygen Evolution in LiNiO 2 -Based Cathode Materials
journal, November 2018

  • Kong, Fantai; Liang, Chaoping; Wang, Luhua
  • Advanced Energy Materials, Vol. 9, Issue 2
  • DOI: 10.1002/aenm.201802586

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Surface-Sensitive NMR Detection of the Solid Electrolyte Interphase Layer on Reduced Graphene Oxide
journal, February 2017


Fundamental Concepts of NMR in Paramagnetic Systems. Part II: Relaxation Effects
journal, July 1990


A Combined Computational/Experimental Study on LiNi 1/3 Co 1/3 Mn 1/3 O 2
journal, September 2003

  • Hwang, B. J.; Tsai, Y. W.; Carlier, D.
  • Chemistry of Materials, Vol. 15, Issue 19
  • DOI: 10.1021/cm030299v