DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks

Abstract

Studying the coordination of actinide-based metal oxo clusters can provide valuable insights for nuclear energy technologies and radioactive waste containment. Metal–organic frameworks serve as a platform to directly interrogate the structure and properties of understudied actinide elements, including thorium. Examples of structural evolutions within Th oxo species within MOFs are rare yet relevant for nuclear waste speciation in solution. Herein, we report the serendipitous discovery of the structural evolution of Th-UiO-66 containing a hexanuclear Th node to a mononuclear Th(bdc)2(dmf)2 upon the evaporation of solvent from the reaction. We observe a partial reversal of Th(bdc)2(dmf)2 back to Th-UiO-66 upon hydrothermal treatment, indicating the complex dynamics of Th oxo species in solution. As a result, we report that isolated Ce-UiO-66 similarly transforms to a newly isolated 1D CeIII carboxylate chain MOF named NU-351 under the same conditions as Th-UiO-66, while Zr-UiO-66 and Hf-UiO-66 retain their structures.

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Northwestern University, Evanston, IL (United States)
Publication Date:
Research Org.:
Northwestern Univ., Evanston, IL (United States); University of Notre Dame, IN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1978858
Alternate Identifier(s):
OSTI ID: 1874512
Grant/Contract Number:  
FG02-03ER15457; NA0003763; DGE-1842165
Resource Type:
Accepted Manuscript
Journal Name:
CrystEngComm
Additional Journal Information:
Journal Volume: 24; Journal Issue: 28; Journal ID: ISSN 1466-8033
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Chemistry; Crystallography

Citation Formats

Wasson, Megan C., Xie, Haomiao, Wang, Xingjie, Duncan, Joshua S., and Farha, Omar K. Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. United States: N. p., 2022. Web. doi:10.1039/d2ce00650b.
Wasson, Megan C., Xie, Haomiao, Wang, Xingjie, Duncan, Joshua S., & Farha, Omar K. Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks. United States. https://doi.org/10.1039/d2ce00650b
Wasson, Megan C., Xie, Haomiao, Wang, Xingjie, Duncan, Joshua S., and Farha, Omar K. Thu . "Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks". United States. https://doi.org/10.1039/d2ce00650b. https://www.osti.gov/servlets/purl/1978858.
@article{osti_1978858,
title = {Structural transformation of metal oxo species within UiO-66 type metal–organic frameworks},
author = {Wasson, Megan C. and Xie, Haomiao and Wang, Xingjie and Duncan, Joshua S. and Farha, Omar K.},
abstractNote = {Studying the coordination of actinide-based metal oxo clusters can provide valuable insights for nuclear energy technologies and radioactive waste containment. Metal–organic frameworks serve as a platform to directly interrogate the structure and properties of understudied actinide elements, including thorium. Examples of structural evolutions within Th oxo species within MOFs are rare yet relevant for nuclear waste speciation in solution. Herein, we report the serendipitous discovery of the structural evolution of Th-UiO-66 containing a hexanuclear Th node to a mononuclear Th(bdc)2(dmf)2 upon the evaporation of solvent from the reaction. We observe a partial reversal of Th(bdc)2(dmf)2 back to Th-UiO-66 upon hydrothermal treatment, indicating the complex dynamics of Th oxo species in solution. As a result, we report that isolated Ce-UiO-66 similarly transforms to a newly isolated 1D CeIII carboxylate chain MOF named NU-351 under the same conditions as Th-UiO-66, while Zr-UiO-66 and Hf-UiO-66 retain their structures.},
doi = {10.1039/d2ce00650b},
journal = {CrystEngComm},
number = 28,
volume = 24,
place = {United States},
year = {Thu Jun 30 00:00:00 EDT 2022},
month = {Thu Jun 30 00:00:00 EDT 2022}
}

Works referenced in this record:

Unusual Metal–Organic Framework Topology and Radiation Resistance through Neptunyl Coordination Chemistry
journal, October 2021

  • Gilson, Sara E.; Fairley, Melissa; Hanna, Sylvia L.
  • Journal of the American Chemical Society, Vol. 143, Issue 42
  • DOI: 10.1021/jacs.1c08854

Synthetic Control of Thorium Polyoxo-Clusters in Metal–Organic Frameworks toward New Thorium-Based Materials
journal, March 2019

  • Li, Peng; Wang, Xingjie; Otake, Ken-ichi
  • ACS Applied Nano Materials, Vol. 2, Issue 4
  • DOI: 10.1021/acsanm.9b00188

Thorium(IV) Molecular Clusters with a Hexanuclear Th Core
journal, October 2011

  • Knope, Karah E.; Wilson, Richard E.; Vasiliu, Monica
  • Inorganic Chemistry, Vol. 50, Issue 19
  • DOI: 10.1021/ic2014946

In Situ Formation of Unprecedented Neptunium-Oxide Wheel Clusters Stabilized in a Metal–Organic Framework
journal, July 2019

  • Gilson, Sara E.; Li, Peng; Szymanowski, Jennifer E. S.
  • Journal of the American Chemical Society, Vol. 141, Issue 30
  • DOI: 10.1021/jacs.9b06187

Comparisons of Plutonium, Thorium, and Cerium Tellurite Sulfates
journal, March 2013

  • Lin, Jian; Cross, Justin N.; Diwu, Juan
  • Inorganic Chemistry, Vol. 52, Issue 8
  • DOI: 10.1021/ic302216y

Stabilization of an Unprecedented Hexanuclear Secondary Building Unit in a Thorium-Based Metal–Organic Framework
journal, February 2019


Modulation of crystal growth and structure within cerium-based metal–organic frameworks
journal, January 2020

  • Wasson, Megan C.; Otake, Ken-ichi; Gong, Xinyi
  • CrystEngComm, Vol. 22, Issue 47
  • DOI: 10.1039/D0CE01223H

Advancement of Actinide Metal–Organic Framework Chemistry via Synthesis of Pu-UiO-66
journal, April 2020

  • Hastings, Ashley M.; Ray, Debmalya; Jeong, WooSeok
  • Journal of the American Chemical Society, Vol. 142, Issue 20
  • DOI: 10.1021/jacs.0c01895

Probing the Influence of Acidity and Temperature to Th(IV) on Hydrolysis, Nucleation, and Structural Topology
journal, November 2017


Metal–organic framework materials as catalysts
journal, January 2009

  • Lee, JeongYong; Farha, Omar K.; Roberts, John
  • Chemical Society Reviews, Vol. 38, Issue 5, p. 1450-1459
  • DOI: 10.1039/b807080f

Molecular sieving of ethylene from ethane using a rigid metal–organic framework
journal, November 2018


Beyond structural motifs: the frontier of actinide-containing metal–organic frameworks
journal, January 2021

  • Martin, Corey R.; Leith, Gabrielle A.; Shustova, Natalia B.
  • Chemical Science, Vol. 12, Issue 21
  • DOI: 10.1039/D1SC01827B

The molten salt reactor (MSR) in generation IV: Overview and perspectives
journal, November 2014


Unexpected structural complexity of thorium coordination polymers and polyoxo cluster built from simple formate ligands
journal, January 2020

  • Li, Zi-Jian; Guo, Shangyao; Lu, Huangjie
  • Inorganic Chemistry Frontiers, Vol. 7, Issue 1
  • DOI: 10.1039/C9QI01263J

Thorium Terephthalates Coordination Polymers Synthesized in Solvothermal DMF/H 2 O System
journal, February 2015

  • Falaise, Clément; Charles, Jean-Sébastien; Volkringer, Christophe
  • Inorganic Chemistry, Vol. 54, Issue 5
  • DOI: 10.1021/ic502725y

Unveiling the Unique Roles of Metal Coordination and Modulator in the Polymorphism Control of Metal‐Organic Frameworks
journal, November 2021

  • Li, Zi‐Jian; Ju, Yu; Zhang, Zeya
  • Chemistry – A European Journal, Vol. 27, Issue 70
  • DOI: 10.1002/chem.202103062

The Hydrolysis of Thorium(IV) at 0 and 95°
journal, April 1965

  • Baes, C. F.; Meyer, Norman J.; Roberts, C. E.
  • Inorganic Chemistry, Vol. 4, Issue 4
  • DOI: 10.1021/ic50026a017

A New Zirconium Inorganic Building Brick Forming Metal Organic Frameworks with Exceptional Stability
journal, October 2008

  • Cavka, Jasmina Hafizovic; Jakobsen, Søren; Olsbye, Unni
  • Journal of the American Chemical Society, Vol. 130, Issue 42, p. 13850-13851
  • DOI: 10.1021/ja8057953

Introduction to Metal–Organic Frameworks
journal, September 2011

  • Zhou, Hong-Cai; Long, Jeffrey R.; Yaghi, Omar M.
  • Chemical Reviews, Vol. 112, Issue 2, p. 673-674
  • DOI: 10.1021/cr300014x

First Hexanuclear U IV and Th IV Formate Complexes - Structure and Stability Range in Aqueous Solution : First Hexanuclear U
journal, October 2009

  • Takao, Shinobu; Takao, Koichiro; Kraus, Werner
  • European Journal of Inorganic Chemistry, Vol. 2009, Issue 32
  • DOI: 10.1002/ejic.200900899

Pore chemistry and size control in hybrid porous materials for acetylene capture from ethylene
journal, May 2016


Discovery of spontaneous de-interpenetration through charged point-point repulsions
journal, January 2022


Structure and stability range of a hexanuclear Th(iv)–glycine complex
journal, January 2012

  • Hennig, Christoph; Takao, Shinobu; Takao, Koichiro
  • Dalton Transactions, Vol. 41, Issue 41
  • DOI: 10.1039/c2dt31367g

Methane storage in flexible metal–organic frameworks with intrinsic thermal management
journal, October 2015

  • Mason, Jarad A.; Oktawiec, Julia; Taylor, Mercedes K.
  • Nature, Vol. 527, Issue 7578
  • DOI: 10.1038/nature15732

Water as a structure-driving agent between the UiO-66 and MIL-140A metal–organic frameworks
journal, January 2019

  • Butova, Vera V.; Budnyk, Andriy P.; Charykov, Konstantin M.
  • Chemical Communications, Vol. 55, Issue 7
  • DOI: 10.1039/C8CC07709F

Recent advances in the applications of thorium-based metal–organic frameworks and molecular clusters
journal, January 2022

  • Li, Zi-Jian; Guo, Xiaofeng; Qiu, Jie
  • Dalton Transactions, Vol. 51, Issue 19
  • DOI: 10.1039/D2DT00265E

Structural Evolution from Noninterpenetrated to Interpenetrated Thorium–Organic Frameworks Exhibiting High Propyne Storage
journal, April 2021