DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: KATRIN background due to surface radioimpurities

Abstract

The goal of the KArlsruhe TRItrium Neutrino (KATRIN) experiment is the determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c2 at 90 % C.L.1. This goal can only be achieved with a very low background level in the order of 10 mcps2 in the detector region of interest. A possible background source are α-decays on the inner surface of the KATRIN Main Spectrometer. Rydberg atoms, produced in sputtering processes accompanying the α-decays, are not influenced by electric or magnetic fields and freely propagate inside the vacuum of the Main Spectrometer. Here, they can be ionized by thermal radiation and the released electrons directly contribute to the KATRIN background. Two α-sources, 223Ra and 228Th, were installed at the Main Spectrometer with the purpose of temporarily increasing the background in order to study α-decay induced background processes. In this paper, we present a possible background generation mechanism and measurements performed with these two radioactive sources. Our results show a clear correlation between α-activity on the inner spectrometer surface and background from the volume of the spectrometer. Two key characteristics of the Main Spectrometer background – the dependency on the inner electrode offset potential, and the radial distribution –more » could be reproduced with this artificially induced background. These findings indicate a high contribution of α-decay induced events to the residual KATRIN background.« less

Authors:
 [1];  [2]; ORCiD logo [3];  [1];  [1];  [1];  [4];  [1];  [1]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7];  [8];  [2];  [3];  [9]; ORCiD logo [4];  [1]; ORCiD logo [1];  [1] more »;  [4]; ORCiD logo [1] « less
  1. Karlsruhe Institute of Technology (KIT) (Germany)
  2. Technical University of Munich (Germany); Max–Planck-Institut für Physik, Munich (Germany)
  3. Max–Planck-Institut für Kernphysik, Heidelberg (Germany)
  4. Westfälische Wilhelms-Universität Münster (Germany)
  5. European Organization for Nuclear Research (CERN), Meyrin (Switzerland)
  6. Max–Planck-Institut für Kernphysik, Heidelberg (Germany); European Organization for Nuclear Research (CERN), Meyrin (Switzerland)
  7. Institute Laue-Langevin,, Grenoble (France)
  8. Westfälische Wilhelms-Universität Münster (Germany); Russian Academy of Sciences (RAS), Moscow (Russian Federation)
  9. University of Applied Sciences (HFD) Fulda (Germany)
Publication Date:
Research Org.:
Massachusetts Insitute of Technology (MIT), Cambridge, MA (United States); Univ. of Washington, Seattle, WA (United States); Duke Univ., Durham, NC (United States); University of North Carolina, Chapel Hill, NC (United States); Univ. of California, Santa Barbara, CA (United States); Univ. of California, Oakland, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC); Helmholtz Association (HGF); Ministry for Education and Research (BMBF); German Ministry of Education, Youth and Sport; Joint Institute for Nuclear Research
OSTI Identifier:
1976880
Grant/Contract Number:  
FG02-94ER40818; FG02-97ER41020; FG02-97ER41033; FG02-97ER41041; SC0004036; SC0011091; AC02-05CH11231; 05A17PM3; 05A17PX3; 05A17VK2; 05A17WO3; VH-NG-1055; CANAM-LM2011019
Resource Type:
Accepted Manuscript
Journal Name:
Astroparticle Physics
Additional Journal Information:
Journal Volume: 138; Journal Issue: C; Journal ID: ISSN 0927-6505
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; neutrino mass; beta-spectroscopy; background; radioactive decays

Citation Formats

Fränkle, F. M., Schaller, A., Blaum, K., Bornschein, L., Drexlin, G., Glück, F., Hannen, V., Harms, F., Hinz, D., Johnston, K., Karthein, J., Köster, U., Lokhov, A., Mertens, S., Müller, F., Osipowicz, A., Ranitzsch, P. C.-O., Schlösser, K., Thümmler, T., Trost, N., Weinheimer, C., and Wolf, J. KATRIN background due to surface radioimpurities. United States: N. p., 2022. Web. doi:10.1016/j.astropartphys.2022.102686.
Fränkle, F. M., Schaller, A., Blaum, K., Bornschein, L., Drexlin, G., Glück, F., Hannen, V., Harms, F., Hinz, D., Johnston, K., Karthein, J., Köster, U., Lokhov, A., Mertens, S., Müller, F., Osipowicz, A., Ranitzsch, P. C.-O., Schlösser, K., Thümmler, T., Trost, N., Weinheimer, C., & Wolf, J. KATRIN background due to surface radioimpurities. United States. https://doi.org/10.1016/j.astropartphys.2022.102686
Fränkle, F. M., Schaller, A., Blaum, K., Bornschein, L., Drexlin, G., Glück, F., Hannen, V., Harms, F., Hinz, D., Johnston, K., Karthein, J., Köster, U., Lokhov, A., Mertens, S., Müller, F., Osipowicz, A., Ranitzsch, P. C.-O., Schlösser, K., Thümmler, T., Trost, N., Weinheimer, C., and Wolf, J. Mon . "KATRIN background due to surface radioimpurities". United States. https://doi.org/10.1016/j.astropartphys.2022.102686. https://www.osti.gov/servlets/purl/1976880.
@article{osti_1976880,
title = {KATRIN background due to surface radioimpurities},
author = {Fränkle, F. M. and Schaller, A. and Blaum, K. and Bornschein, L. and Drexlin, G. and Glück, F. and Hannen, V. and Harms, F. and Hinz, D. and Johnston, K. and Karthein, J. and Köster, U. and Lokhov, A. and Mertens, S. and Müller, F. and Osipowicz, A. and Ranitzsch, P. C.-O. and Schlösser, K. and Thümmler, T. and Trost, N. and Weinheimer, C. and Wolf, J.},
abstractNote = {The goal of the KArlsruhe TRItrium Neutrino (KATRIN) experiment is the determination of the effective electron antineutrino mass with a sensitivity of 0.2 eV/c2 at 90 % C.L.1. This goal can only be achieved with a very low background level in the order of 10 mcps2 in the detector region of interest. A possible background source are α-decays on the inner surface of the KATRIN Main Spectrometer. Rydberg atoms, produced in sputtering processes accompanying the α-decays, are not influenced by electric or magnetic fields and freely propagate inside the vacuum of the Main Spectrometer. Here, they can be ionized by thermal radiation and the released electrons directly contribute to the KATRIN background. Two α-sources, 223Ra and 228Th, were installed at the Main Spectrometer with the purpose of temporarily increasing the background in order to study α-decay induced background processes. In this paper, we present a possible background generation mechanism and measurements performed with these two radioactive sources. Our results show a clear correlation between α-activity on the inner spectrometer surface and background from the volume of the spectrometer. Two key characteristics of the Main Spectrometer background – the dependency on the inner electrode offset potential, and the radial distribution – could be reproduced with this artificially induced background. These findings indicate a high contribution of α-decay induced events to the residual KATRIN background.},
doi = {10.1016/j.astropartphys.2022.102686},
journal = {Astroparticle Physics},
number = C,
volume = 138,
place = {United States},
year = {Mon Jan 31 00:00:00 EST 2022},
month = {Mon Jan 31 00:00:00 EST 2022}
}

Works referenced in this record:

The wire electrode system for the KATRIN main spectrometer
journal, April 2010


Nuclear Data Sheets for A = 215
journal, December 2013


Nuclear Data Sheets for A = 224
journal, December 2015


Nuclear Data Sheets for A = 208
journal, August 2007


Current Direct Neutrino Mass Experiments
journal, January 2013

  • Drexlin, G.; Hannen, V.; Mertens, S.
  • Advances in High Energy Physics, Vol. 2013
  • DOI: 10.1155/2013/293986

Focal-plane detector system for the KATRIN experiment
journal, April 2015

  • Amsbaugh, J. F.; Barrett, J.; Beglarian, A.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 778
  • DOI: 10.1016/j.nima.2014.12.116

The design, construction, and commissioning of the KATRIN experiment
journal, August 2021


Gamma-induced background in the KATRIN main spectrometer
journal, September 2019


Technical design and commissioning of the KATRIN large-volume air coil system
journal, February 2018


Nuclear Data Sheets for A = 220
journal, April 2011


Nuclear Data Sheets for A=212
journal, September 2020


Nuclear Data Sheets for A = 207
journal, March 2011


Thirteen Ways to Look at the Correlation Coefficient
journal, February 1988

  • Rodgers, Joseph Lee; Nicewander, W. Alan
  • The American Statistician, Vol. 42, Issue 1
  • DOI: 10.2307/2685263

Magnetic field paralleliser for 2π electron-spectrometer and electron-image magnifier
journal, April 1983


Measurement of the 211 Pb half-life using recoil atoms from 219 Rn decay
journal, April 2016


Nuclear Data Sheets for A=219
journal, July 2021


The KATRIN superconducting magnets: overview and first performance results
journal, August 2018


Muon-induced background in the KATRIN main spectrometer
journal, March 2019


Numerical simulation of a low-energy electron electrostatic integral spectrometer with adiabatic magnetic collimation
journal, August 1985

  • Lobashev, V. M.; Fedoseyev, A. I.; Serdyuk, O. V.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 238, Issue 2-3
  • DOI: 10.1016/0168-9002(85)90491-7

Nuclear Data Sheets for A=212
journal, February 2005


Nuclear Data Sheets for A = 211
journal, June 2013


Half-life of radium-223
journal, September 1965


A 220 Rn source for the calibration of low-background experiments
journal, April 2016


Nuclear Data Sheets for A = 216
journal, May 2007


Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN
journal, November 2019


A solenoid retarding spectrometer with high resolution and transmission for keV electrons
journal, February 1992

  • Picard, A.; Backe, H.; Barth, H.
  • Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 63, Issue 3
  • DOI: 10.1016/0168-583X(92)95119-C