DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: In–Depth Analysis of the Degradation Mechanisms of High–Nickel, Low/No–Cobalt Layered Oxide Cathodes for Lithium–Ion Batteries

Abstract

Abstract A rational compositional design of high‐nickel, cobalt‐free layered oxide materials for high‐energy and low‐cost lithium‐ion batteries would be expected to further propel the widespread adoption of electric vehicles (EVs), yet a composition with satisfactory electrochemical properties has yet to emerge. The previous work has demonstrated a promising LiNi 0.883 Mn 0.056 Al 0.061 O 2 (NMA‐89) composition that outperformed high‐nickel, cobalt‐containing analogs in cycling stability and maintained a comparable rate performance and thermal stability. Herein, the capacity fading mechanism of NMA‐89 in a pouch full cell with a 4.2 V cutoff is compared to that of its cobalt‐containing analogs. The results reveal that particle cracking in LiNi 0.89 Mn 0.055 Co 0.055 O 2 (NMC‐89) and LiNi 0.883 Co 0.053 Al 0.064 O 2 (NCA‐89) leads to a loss of active material and an increase in surface area, thereby exacerbating structural and surface instabilities, accelerating impedance and polarization growth, and ultimately reducing their capacity retentions. LiNi 0.89 Mn 0.044 Co 0.042 Al 0.013 Mg 0.011 O 2 (NMCAM‐89) and NMA‐89 experience subdued surface reactions and maintain spherical particle structures, both of which are conducive to their capacity retentions during long‐term cycling. This investigation offers insights into how specific transition‐metal ionsmore » dictate the electrochemical stability of high‐Ni layered oxide cathode materials, highlights the benefit of Mn‐Al combination in NMA‐89, and presents potential strategies to further enhance the performance of this novel class of cathode materials.« less

Authors:
 [1];  [1];  [1];  [1];  [1];  [1]; ORCiD logo [1]
  1. Univ. of Texas at Austin, TX (United States)
Publication Date:
Research Org.:
Univ. of Texas at Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO); USDOE
OSTI Identifier:
1972443
Alternate Identifier(s):
OSTI ID: 1798406
Grant/Contract Number:  
EE0008445; DE‐EE0008445
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 11; Journal Issue: 31; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; lithium-ion batteries; cobalt-free cathodes; high-nickel layered oxides; pouch cells; degradation mechanisms

Citation Formats

Lee, Steven, Li, Wangda, Dolocan, Andrei, Celio, Hugo, Park, Hyoju, Warner, Jamie H., and Manthiram, Arumugam. In–Depth Analysis of the Degradation Mechanisms of High–Nickel, Low/No–Cobalt Layered Oxide Cathodes for Lithium–Ion Batteries. United States: N. p., 2021. Web. doi:10.1002/aenm.202100858.
Lee, Steven, Li, Wangda, Dolocan, Andrei, Celio, Hugo, Park, Hyoju, Warner, Jamie H., & Manthiram, Arumugam. In–Depth Analysis of the Degradation Mechanisms of High–Nickel, Low/No–Cobalt Layered Oxide Cathodes for Lithium–Ion Batteries. United States. https://doi.org/10.1002/aenm.202100858
Lee, Steven, Li, Wangda, Dolocan, Andrei, Celio, Hugo, Park, Hyoju, Warner, Jamie H., and Manthiram, Arumugam. Thu . "In–Depth Analysis of the Degradation Mechanisms of High–Nickel, Low/No–Cobalt Layered Oxide Cathodes for Lithium–Ion Batteries". United States. https://doi.org/10.1002/aenm.202100858. https://www.osti.gov/servlets/purl/1972443.
@article{osti_1972443,
title = {In–Depth Analysis of the Degradation Mechanisms of High–Nickel, Low/No–Cobalt Layered Oxide Cathodes for Lithium–Ion Batteries},
author = {Lee, Steven and Li, Wangda and Dolocan, Andrei and Celio, Hugo and Park, Hyoju and Warner, Jamie H. and Manthiram, Arumugam},
abstractNote = {Abstract A rational compositional design of high‐nickel, cobalt‐free layered oxide materials for high‐energy and low‐cost lithium‐ion batteries would be expected to further propel the widespread adoption of electric vehicles (EVs), yet a composition with satisfactory electrochemical properties has yet to emerge. The previous work has demonstrated a promising LiNi 0.883 Mn 0.056 Al 0.061 O 2 (NMA‐89) composition that outperformed high‐nickel, cobalt‐containing analogs in cycling stability and maintained a comparable rate performance and thermal stability. Herein, the capacity fading mechanism of NMA‐89 in a pouch full cell with a 4.2 V cutoff is compared to that of its cobalt‐containing analogs. The results reveal that particle cracking in LiNi 0.89 Mn 0.055 Co 0.055 O 2 (NMC‐89) and LiNi 0.883 Co 0.053 Al 0.064 O 2 (NCA‐89) leads to a loss of active material and an increase in surface area, thereby exacerbating structural and surface instabilities, accelerating impedance and polarization growth, and ultimately reducing their capacity retentions. LiNi 0.89 Mn 0.044 Co 0.042 Al 0.013 Mg 0.011 O 2 (NMCAM‐89) and NMA‐89 experience subdued surface reactions and maintain spherical particle structures, both of which are conducive to their capacity retentions during long‐term cycling. This investigation offers insights into how specific transition‐metal ions dictate the electrochemical stability of high‐Ni layered oxide cathode materials, highlights the benefit of Mn‐Al combination in NMA‐89, and presents potential strategies to further enhance the performance of this novel class of cathode materials.},
doi = {10.1002/aenm.202100858},
journal = {Advanced Energy Materials},
number = 31,
volume = 11,
place = {United States},
year = {Thu Jun 24 00:00:00 EDT 2021},
month = {Thu Jun 24 00:00:00 EDT 2021}
}

Works referenced in this record:

High-voltage positive electrode materials for lithium-ion batteries
journal, January 2017

  • Li, Wangda; Song, Bohang; Manthiram, Arumugam
  • Chemical Society Reviews, Vol. 46, Issue 10
  • DOI: 10.1039/C6CS00875E

Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries
journal, April 2004


High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


A reflection on lithium-ion battery cathode chemistry
journal, March 2020


Cobalt‐Free High‐Capacity Ni‐Rich Layered Li[Ni 0.9 Mn 0.1 ]O 2 Cathode
journal, December 2019

  • Aishova, Assylzat; Park, Geon‐Tae; Yoon, Chong S.
  • Advanced Energy Materials, Vol. 10, Issue 4
  • DOI: 10.1002/aenm.201903179

Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of Li x NiO 2  with the Electrolyte of Li-Ion Batteries
journal, January 2019

  • Cormier, Marc M. E.; Zhang, Ning; Liu, Aaron
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0491913jes

Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?
journal, January 2019

  • Li, Hongyang; Cormier, Marc; Zhang, Ning
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1381902jes

Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO 2 Cathode in Li-Metal Batteries
journal, March 2020

  • Mu, Linqin; Kan, Wang Hay; Kuai, Chunguang
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 11
  • DOI: 10.1021/acsami.0c00111

Dopant Distribution in Co-Free High-Energy Layered Cathode Materials
journal, November 2019


High‐Nickel NMA: A Cobalt‐Free Alternative to NMC and NCA Cathodes for Lithium‐Ion Batteries
journal, July 2020

  • Li, Wangda; Lee, Steven; Manthiram, Arumugam
  • Advanced Materials, Vol. 32, Issue 33
  • DOI: 10.1002/adma.202002718

Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


Effect of electrolyte on the nanostructure of the solid electrolyte interphase (SEI) and performance of lithium metal anodes
journal, January 2018

  • Jurng, Sunhyung; Brown, Zachary L.; Kim, Jiyeon
  • Energy & Environmental Science, Vol. 11, Issue 9
  • DOI: 10.1039/C8EE00364E

Armoring LiNi 1/3 Co 1/3 Mn 1/3 O 2 Cathode with Reliable Fluorinated Organic–Inorganic Hybrid Interphase Layer toward Durable High Rate Battery
journal, March 2020

  • Chen, Yu; Zhao, Weimin; Zhang, Quanhai
  • Advanced Functional Materials, Vol. 30, Issue 19
  • DOI: 10.1002/adfm.202000396

The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc
journal, January 2008

  • Gaberscek, Miran; Moskon, Joze; Erjavec, Bostjan
  • Electrochemical and Solid-State Letters, Vol. 11, Issue 10
  • DOI: 10.1149/1.2964220

Identifying Contact Resistances in High-Voltage Cathodes by Impedance Spectroscopy
journal, January 2019

  • Pritzl, Daniel; Bumberger, Andreas E.; Wetjen, Morten
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0451904jes

An Analysis Protocol for Three-Electrode Li-Ion Battery Impedance Spectra: Part I. Analysis of a High-Voltage Positive Electrode
journal, January 2017

  • Landesfeind, Johannes; Pritzl, Daniel; Gasteiger, Hubert A.
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0131709jes

Editors' Choice—Capacity Fading Mechanisms of NCM-811 Cathodes in Lithium-Ion Batteries Studied by X-ray Diffraction and Other Diagnostics
journal, January 2019

  • Friedrich, Franziska; Strehle, Benjamin; Freiberg, Anna T. S.
  • Journal of The Electrochemical Society, Vol. 166, Issue 15
  • DOI: 10.1149/2.0821915jes

Phase Behavior during Electrochemical Cycling of Ni‐Rich Cathode Materials for Li‐Ion Batteries
journal, December 2020

  • Xu, Chao; Reeves, Philip J.; Jacquet, Quentin
  • Advanced Energy Materials, Vol. 11, Issue 7
  • DOI: 10.1002/aenm.202003404

Investigation into Mechanical Degradation and Fatigue of High-Ni NCM Cathode Material: A Long-Term Cycling Study of Full Cells
journal, September 2019

  • Schweidler, Simon; de Biasi, Lea; Garcia, Grecia
  • ACS Applied Energy Materials, Vol. 2, Issue 10
  • DOI: 10.1021/acsaem.9b01354

An Unavoidable Challenge for Ni-Rich Positive Electrode Materials for Lithium-Ion Batteries
journal, August 2019


Bulk fatigue induced by surface reconstruction in layered Ni-rich cathodes for Li-ion batteries
journal, August 2020


Collapse of LiNi 1– xy Co x Mn y O 2 Lattice at Deep Charge Irrespective of Nickel Content in Lithium-Ion Batteries
journal, March 2019

  • Li, Wangda; Asl, Hooman Yaghoobnejad; Xie, Qiang
  • Journal of the American Chemical Society, Vol. 141, Issue 13
  • DOI: 10.1021/jacs.8b13798

Mn versus Al in Layered Oxide Cathodes in Lithium-Ion Batteries: A Comprehensive Evaluation on Long-Term Cyclability
journal, February 2018

  • Li, Wangda; Liu, Xiaoming; Celio, Hugo
  • Advanced Energy Materials, Vol. 8, Issue 15
  • DOI: 10.1002/aenm.201703154

Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries
journal, April 2018


A Mg-Doped High-Nickel Layered Oxide Cathode Enabling Safer, High-Energy-Density Li-Ion Batteries
journal, January 2019


Fluorinated Carbonate-Based Electrolyte for High-Voltage Li(Ni 0.5 Mn 0.3 Co 0.2 )O 2 /Graphite Lithium-Ion Battery
journal, January 2017

  • Im, Jinsol; Lee, Jieun; Ryou, Myung-Hyun
  • Journal of The Electrochemical Society, Vol. 164, Issue 1
  • DOI: 10.1149/2.0591701jes

Stable cycling of high-voltage lithium metal batteries in ether electrolytes
journal, July 2018


XPS-Surface Analysis of SEI Layers on Li-Ion Cathodes: Part II. SEI-Composition and Formation inside Composite Electrodes
journal, January 2018

  • Schulz, Natalia; Hausbrand, René; Wittich, Carolin
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0881803jes

Clarification of Decomposition Pathways in a State‐of‐the‐Art Lithium Ion Battery Electrolyte through 13 C‐Labeling of Electrolyte Components
journal, February 2020

  • Henschel, Jonas; Peschel, Christoph; Klein, Sven
  • Angewandte Chemie International Edition, Vol. 59, Issue 15
  • DOI: 10.1002/anie.202000727

The cathode–electrolyte interface in the Li-ion battery
journal, November 2004


Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum
journal, April 2018


Al Doping for Mitigating the Capacity Fading and Voltage Decay of Layered Li and Mn-Rich Cathodes for Li-Ion Batteries
journal, February 2016

  • Nayak, Prasant Kumar; Grinblat, Judith; Levi, Mikhael
  • Advanced Energy Materials, Vol. 6, Issue 8
  • DOI: 10.1002/aenm.201502398

An in-depth understanding of the effect of aluminum doping in high-nickel cathodes for lithium-ion batteries
journal, January 2021


A first-principles study of the preventive effects of Al and Mg doping on the degradation in LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode materials
journal, January 2017

  • Min, Kyoungmin; Seo, Seung-Woo; Song, You Young
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 3
  • DOI: 10.1039/C6CP06270A

Long-Term Cyclability of NCM-811 at High Voltages in Lithium-Ion Batteries: an In-Depth Diagnostic Study
journal, August 2020


Dynamic behaviour of interphases and its implication on high-energy-density cathode materials in lithium-ion batteries
journal, April 2017

  • Li, Wangda; Dolocan, Andrei; Oh, Pilgun
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14589

Formation and Inhibition of Metallic Lithium Microstructures in Lithium Batteries Driven by Chemical Crossover
journal, May 2017


The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries
journal, January 2009

  • El Ouatani, L.; Dedryvère, R.; Siret, C.
  • Journal of The Electrochemical Society, Vol. 156, Issue 2
  • DOI: 10.1149/1.3029674

Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries
journal, January 2015

  • Nie, Mengyun; Demeaux, Julien; Young, Benjamin T.
  • Journal of The Electrochemical Society, Vol. 162, Issue 13
  • DOI: 10.1149/2.0021513jes

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Understanding the Degradation Mechanisms of LiNi 0.5 Co 0.2 Mn 0.3 O 2 Cathode Material in Lithium Ion Batteries
journal, August 2013

  • Jung, Sung-Kyun; Gwon, Hyeokjo; Hong, Jihyun
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300787

Surface Structural and Chemical Evolution of Layered LiNi 0.8 Co 0.15 Al 0.05 O 2 (NCA) under High Voltage and Elevated Temperature Conditions
journal, November 2018


Identifying the chemical and structural irreversibility in LiNi 0.8 Co 0.15 Al 0.05 O 2 – a model compound for classical layered intercalation
journal, January 2018

  • Liu, Haodong; Liu, Hao; Seymour, Ieuan D.
  • Journal of Materials Chemistry A, Vol. 6, Issue 9
  • DOI: 10.1039/C7TA10829J

Role of Mn Content on the Electrochemical Properties of Nickel-Rich Layered LiNi 0.8– x Co 0.1 Mn 0.1+ x O 2 (0.0 ≤ x ≤ 0.08) Cathodes for Lithium-Ion Batteries
journal, March 2015

  • Zheng, Jianming; Kan, Wang Hay; Manthiram, Arumugam
  • ACS Applied Materials & Interfaces, Vol. 7, Issue 12
  • DOI: 10.1021/acsami.5b00788

Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides
journal, March 2019


Direct Observation of Lattice Aluminum Environments in Li Ion Cathodes LiNi 1– yz Co y Al z O 2 and Al-Doped LiNi x Mn y Co z O 2 via 27 Al MAS NMR Spectroscopy
journal, June 2016

  • Dogan, Fulya; Vaughey, John T.; Iddir, Hakim
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 26
  • DOI: 10.1021/acsami.6b04516

Synthesis of Mg and Mn Doped LiCoO 2 and Effects on High Voltage Cycling
journal, January 2017

  • Liu, Aaron; Li, Jing; Shunmugasundaram, Ramesh
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.1381707jes

Investigating the Effects of Magnesium Doping in Various Ni-Rich Positive Electrode Materials for Lithium Ion Batteries
journal, January 2019

  • Liu, Aaron; Zhang, Ning; Li, Hongyang
  • Journal of The Electrochemical Society, Vol. 166, Issue 16
  • DOI: 10.1149/2.1101915jes

Zinc-Doped High-Nickel, Low-Cobalt Layered Oxide Cathodes for High-Energy-Density Lithium-Ion Batteries
journal, March 2021

  • Cui, Zehao; Xie, Qiang; Manthiram, Arumugam
  • ACS Applied Materials & Interfaces, Vol. 13, Issue 13
  • DOI: 10.1021/acsami.1c01824

Core/Double-Shell Type Gradient Ni-Rich LiNi 0.76 Co 0.10 Mn 0.14 O 2 with High Capacity and Long Cycle Life for Lithium-Ion Batteries
journal, September 2016

  • Liao, Jin-Yun; Oh, Seung-Min; Manthiram, Arumugam
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 37
  • DOI: 10.1021/acsami.6b06172

Synthesis of Single Crystal LiNi 0.6 Mn 0.2 Co 0.2 O 2 with Enhanced Electrochemical Performance for Lithium Ion Batteries
journal, January 2018

  • Li, Hongyang; Li, Jing; Ma, Xiaowei
  • Journal of The Electrochemical Society, Vol. 165, Issue 5
  • DOI: 10.1149/2.0951805jes

Comparison of Single Crystal and Polycrystalline LiNi 0.5 Mn 0.3 Co 0.2 O 2 Positive Electrode Materials for High Voltage Li-Ion Cells
journal, January 2017

  • Li, Jing; Cameron, Andrew R.; Li, Hongyang
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0991707jes

Single-crystal nickel-rich layered-oxide battery cathode materials: synthesis, electrochemistry, and intra-granular fracture
journal, May 2020


Long-Life, Ultrahigh-Nickel Cathodes with Excellent Air Storage Stability for High-Energy Density Lithium-Based Batteries
journal, August 2020


Improved electrochemical properties of LiNi0.91Co0.06Mn0.03O2 cathode material via Li-reactive coating with metal phosphates
journal, August 2017


Solid electrolyte coated high voltage layered–layered lithium-rich composite cathode: Li1.2Mn0.525Ni0.175Co0.1O2
journal, January 2013

  • Martha, Surendra K.; Nanda, Jagjit; Kim, Yoongu
  • Journal of Materials Chemistry A, Vol. 1, Issue 18
  • DOI: 10.1039/c3ta10586e

Towards high-performance cathode materials for lithium-ion batteries: Al2O3-coated LiNi0.8Co0.15Zn0.05O2
journal, April 2018

  • Yin, Hong; Yu, Xiang-Xiang; Zhao, Han
  • Journal of Solid State Electrochemistry, Vol. 22, Issue 8
  • DOI: 10.1007/s10008-018-3904-4